#!/usr/bin/env python
'''
Classes, functions, and methods for reading, writing, and plotting output
from the Ridley Ionosphere Model (RIM) and the similar legacy code,
Ridley Serial.
Copyright 2010 Los Alamos National Security, LLC.
'''
import os
import numpy as np
from spacepy import deprecated
from spacepy.plot import set_target
from spacepy.pybats import PbData, dmarray
[docs]
def get_iono_cb(ct_name='bwr'):
'''
Several custom colorbars used by RIM and AMIE have become standard when
visualizing data from these models. These are 'blue_white_red' and
'white_red', used for data that have positive and negative values and
for data that have only positive values, respectively. This function
builds and returns these colorbars when called with the initials of the
color table name as the only argument.
Other Parameters
================
ct_name : str
Select the color table. Can be 'bwr' for blue-white-red or 'wr' for
white-red. Defaults to 'bwr'.
Examples
========
>>> bwr_map = get_iono_cb('bwr')
>>> wr_map = get_iono_cb('wr')
'''
from matplotlib.colors import LinearSegmentedColormap as lsc
if ct_name=='bwr':
table = {
'red': [(0.,0.,.0),(.34,0.,0.),(.5,1.,1.),(1.,1.,1.)],
'green':[(0.,0.,0.),(.35,1.,1.),(.66,1.,1.),(1.,0.,0.)],
'blue' :[(0.,1.,1.),(.5,1.,1.),(.66,0.,0.),(.85,0.,0.),(1.,.1,.1)]
}
cmap = lsc('blue_white_red',table)
elif ct_name=='wr':
table = {
'red': [(0.,1.,1.),(1.,1.,1.)],
'green':[(0.,1.,1.),(1.,0.,0.)],
'blue' :[(0.,1.,1.),(1.,.0,.0)]
}
cmap = lsc('white_red',table)
return cmap
[docs]
def tex_label(varname):
'''
Many variable names used in the Ridley Ionosphere Model look much better
in LaTeX format with their proper Greek letters. This function takes
a variable name, and if it is recognized, returns a properly formatted
string that uses MatPlotLib's MathText functionality to display the
proper characters. If it is not recognized, the varname is returned.
Parameters
==========
varname : string
The variable to convert to a LaTeX label.
Examples
========
>>>tex_label('n_phi')
'\\Phi_{Ionosphere}'
>>>tex_label('Not Recognized')
'Not Recognized'
'''
if varname[:2]=='n_' or varname[:2]=='s_':
varname=varname[2:]
known = {
'phi': r'$\Phi_{Ionosphere}$',
'sigmah':r'$\sigma_{Hall}$',
'sigmap':r'$\sigma_{Peder}$',
'jr':r'$J_{radial}$',
'mA/m^2':r'$\mu A/m^{2}$',
'W/m2':r'$W/m^2$',
'eV':'$eV$'
}
if varname in known:
label = known[varname]
else:
label = varname
return label
[docs]
class Iono(PbData):
'''
A class for handling 2D output from the Ridley Ionosphere Model.
Instantiate an object as follows:
>>> iono = rim.Iono('filename.idl')
...where filename.idl is the name of a RIM 2D output file.
'''
[docs]
def __init__(self, infile, *args, **kwargs):
super(Iono, self).__init__(*args, **kwargs)
self.attrs['file']=infile
self.readascii()
[docs]
def readascii(self):
'''
Read an ascii ".idl" output file and load the contents into the object.
'''
from sys import version_info
import re
import datetime as dt
from numpy import zeros, reshape
import gzip
# slurp entire file.
if self.attrs['file'][-3:]=='.gz':
try:
infile = gzip.open(self.attrs['file'],'rt')
except ValueError: #Python2.7 (Windows) compatibility
infile = gzip.open(self.attrs['file'])
else:
infile = open(self.attrs['file'], 'r')
raw = infile.readlines()
infile.close()
# Parse header
title = raw[raw.index('TITLE\n')+1]
self.attrs['title'] = title[title.index('"')+1:title.rindex('"')]
i = raw.index('NUMERICAL VALUES\n')
self.attrs['nvars'] = int(raw[i+1].split()[0])
self.attrs['ntheta']= int(raw[i+2].split()[0])
self.attrs['nphi'] = int(raw[i+3].split()[0])
# Convenience:
nphi, ntheta = self.attrs['nphi'], self.attrs['ntheta']
i = raw.index('TIME\n')
self.attrs['time'] = dt.datetime(
int(raw[i+1].split()[0]), #year
int(raw[i+2].split()[0]), #month
int(raw[i+3].split()[0]), #day
int(raw[i+4].split()[0]), #hour
int(raw[i+5].split()[0]), #min
int(raw[i+6].split()[0]), #sec
int(raw[i+7].split()[0])*1000 #microsec
)
i = raw.index('SIMULATION\n')
self.attrs['iter'] = int(raw[i+1].split()[0])
self.attrs['simtime'] = float(raw[i+2].split()[0])
i = raw.index('DIPOLE TILT\n')
self.tilt = zeros(2)
self.tilt[0] = float(raw[i+1].split()[0])
self.tilt[1] = float(raw[i+2].split()[0])
i = raw.index('VARIABLE LIST\n')
namevar = []
units = {}
for j in range(i+1,i+self.attrs['nvars']+1):
match = re.match(r'\s*\d+\s+([\w\s\W]+)\[([\w\s\W]+)\]',raw[j])
if match:
name = (match.group(1).strip()).lower()
namevar.append(name)
units[name] = match.group(2).strip()
else:
raise ValueError('Could not parse %s' % raw[j])
### Read all data ###
# Create data arrays
nPts = self.attrs['ntheta']*self.attrs['nphi']
for key in namevar:
self['n_'+key] = dmarray(zeros(nPts), {'units':units[key]})
self['s_'+key] = dmarray(zeros(nPts), {'units':units[key]})
i = raw.index('BEGIN NORTHERN HEMISPHERE\n')+1
# Some compilers insert line breaks automatically when fortran format
# string is not adequately specified. Let's see if that's the
# case here: how many lines does it take to cover all variables?
nvars, nvarline, nwrap = len(namevar), 0, 0
while nvarline<nvars:
nvarline += len(raw[i+nwrap].split())
nwrap += 1
# Fill data arrays:
for j in range(nPts):
# Build list of variables; accounting for line-wrapping:
parts = []
iLine = i + j*nwrap
for iwrap in range(nwrap):
parts += raw[iLine+iwrap].split()
for k in range(self.attrs['nvars']):
self['n_'+namevar[k]][j] = parts[k]
i = raw.index('BEGIN SOUTHERN HEMISPHERE\n')+1
for j in range(nPts):
parts = []
iLine = i + j*nwrap
for iwrap in range(nwrap):
parts += raw[iLine+iwrap].split()
for k in range(self.attrs['nvars']):
self['s_'+namevar[k]][j] = parts[k]
# Create 2-D arrays.
for key in namevar:
nkey, skey = 'n_'+key, 's_'+key
self[nkey] = reshape(self[nkey], (ntheta, nphi), order='F')
self[skey] = reshape(self[skey], (ntheta, nphi), order='F')
# Some extra grid info:
self.dlon = self['n_psi' ][0,3]-self['n_psi' ][0,2]
self.dlat = self['n_theta'][3,0]-self['n_theta'][2,0]
[docs]
def calc_j(self):
'''
Calculate total horizontal current as related values. Each will be
stored into *self* using the typical key-value approach. Calculations
are done for both the northern and southern hemisphere with the
appropriate prefixes (``n_`` and ``s_``) applied to each key.
====== ====================================================
key Description
====== ====================================================
j Total horizontal current, $sqrt(jx^2+jy^2+jz^2)$
jphi Azimuthal current, positive values are eastward.
====== ====================================================
Returns
=======
True
Examples
========
>>> a = rim.Iono('spacepy/tests/data/pybats_test/it000321_104510_000.idl.gz')
>>> a.calc_j()
>>> print(a['n_jphi'])
'''
# Loop over hemispheres:
for h in ('n_', 's_'):
# Calculate total horizontal current
self[h+'j'] = np.sqrt( self[h+'jx']**2
+ self[h+'jy']**2
+ self[h+'jz']**2 )
# Calculate total azimuthal current (i.e., electrojets):
self[h+'jphi'] = self[h+'jy'] * np.cos(np.pi/180. * self[h+'psi']) \
- self[h+'jx'] * np.sin(np.pi/180. * self[h+'psi'])
return True
[docs]
def calc_I(self):
'''
Integrate radial current to get the following values:
I: The total radial current over one hemisphere.
Iup: The total upward current over one hemisphere.
Idown: The total downward current over one hemisphere.
Values are stored in the object with the prefix ``n_`` or ``s_``
to indicate the hemisphere and may be accessed via self['n_I'], etc.
Values are stored in units of mega Amps.
Returns
=======
True
Examples
========
>>> a = rim.Iono('spacepy/tests/data/pybats_test/it000321_104510_000.idl.gz')
>>> a.calc_I()
>>> print(a['n_Iup'])
'''
# Calculate some physically meaningful values/units
units = 1E-6*1E-6 # micro amps to amps, amps to MegaAmps
R = (6371.0+110.0)*1000.0 # Radius of Earth + iono altitude
dTheta = np.pi*self.dlat/180.
dPhi = np.pi*self.dlon/180.
# -----NORTHERN HEMISPHERE-----
# Get relevant values:
colat = self['n_theta']*np.pi/180.
integrand = self['n_jr']*np.sin(colat)*dTheta*dPhi
# Get locations of "up" and "down"
loc_up = self['n_jr']>0
loc_do = self['n_jr']<0
self['n_I'] = units*R**2 * np.sum(integrand)
self['n_Iup'] = units*R**2 * np.sum(integrand[loc_up])
self['n_Idown'] = units*R**2 * np.sum(integrand[loc_do])
# -----SOUTHERN HEMISPHERE-----
# Get relevant values:
colat = self['s_theta']*np.pi/180.
integrand = self['s_jr']*np.sin(colat)*dTheta*dPhi
# Get locations of "up" and "down"
loc_up = self['s_jr']>0
loc_do = self['s_jr']<0
self['s_I'] = units*R**2 * np.sum(integrand)
self['s_Iup'] = units*R**2 * np.sum(integrand[loc_up])
self['s_Idown'] = units*R**2 * np.sum(integrand[loc_do])
[docs]
def add_cont(self, var, target=None, n=50, maxz=False, lines=False,
cmap=False, add_cbar=False, label=None, loc=111,
xticksize=12, yticksize=12, max_colat=40, **kwargs):
'''
Create a polar contour of variable *var*. Plot will be either drawn
on a new matplotlib figure and axes, or you can specify a plot target
using the *target* kwarg.
Parameters
==========
var : str
The name of the variable to plot.
Returns
=======
fig : matplotlib figure object
ax : matplotlib axes object
cnt : matplotlib contour object
cb : matplotlib colorbar object
Other Parameters
================
target : Figure or Axes
If None (default), a new figure is generated from scratch.
If a matplotlib Figure object, a new axis is created
to fill that figure.
If a matplotlib Axes object, the plot is placed
into that axis.
loc : int
Use to specify the subplot placement of the axis
(e.g. loc=212, etc.) Used if target is a Figure or None.
Default 111 (single plot).
n : int
Set number of levels. Default is 50. If unfilled lines are
added (see *lines* kwarg), multiples of three provide coherence
between filled and unfilled contours.
lines : bool
Add unfilled black solid/dashed contours to plot for additional
contrast. Default is **True**.
maxz : real
Set the max/min value for the color bar. Default is set by data.
max_colat : real
Set the co-latitude range of the plot, in degrees. Defaults to 40.
cmap : str
Set the colormap. Default is to use Matplotlib's "Reds" for data
that is strictly positive and "Seismic" for diverging data.
Alternatively, legacy Ridley Ionosphere Model color maps can be
loaded using "l_wr" (white red) or "l_bwr" (blue-white-red),
where the "l\\_" prefix indicates legacy and not Matplotlib color maps.
add_cbar : bool
Add colorbar to plot. Default is **False** which will
not add one to the plot.
label : str or None
Label to place at top of plot. Defaults to variable name.
xticksize : int
Size of longitude markers in text points. Defaults to 12.
yticksize : int
Size of latitude markers in text points. Defaults to 12.
Extra keywords are passed to the contourf routine.
'''
# Get only what we need to decrease runtime.
from math import pi
from numpy import linspace
from matplotlib.colors import Normalize
from matplotlib.ticker import MaxNLocator, MultipleLocator
from matplotlib.pyplot import clabel, colorbar
fig, ax = set_target(target, polar=True, loc=loc)
hemi = var[:2]
# user defined variables may not have hemisphere marking.
# Assume nothern hemi in those cases.
if hemi!='n_' and hemi!='s_': hemi = 'n_'
# Set levels and ticks:
if label==None:
label=tex_label(var)
lt_labels = ['06', label, '18', '00']
xticks = [ 0, pi/2, pi, 3*pi/2]
lct = MultipleLocator(10)
minz = self[var].min()
if minz < 0.0:
if not maxz:
maxz = max([abs(minz),self[var].max()])
crange = Normalize(vmin=-1.*maxz, vmax=maxz)
levs = linspace(-1.*maxz, maxz, n)
else:
if not maxz:
maxz = self[var].max()
crange = Normalize(vmin=0., vmax=maxz)
levs = linspace(0., maxz, n)
# Get color map if not given:
if not cmap:
if self[var].min() >= 0.0:
cmap='Reds'
else:
cmap='seismic'
# Search for legacy maps:
elif 'l_' in cmap:
cmap=get_iono_cb(cmap[2:])
# Set the latitude based on hemisphere:
theta = self[hemi+'theta']
if 's_' in hemi: theta = 180-self[hemi+'theta']
# Create contour:
cnt1 = ax.contourf(self[hemi+'psi']*pi/180.0+pi/2., theta,
np.array(self[var]), levs, norm=crange, cmap=cmap,
**kwargs)
# Set xtick label size, increase font of top label.
labels = ax.get_xticklabels()
for l in labels: l.set_size(xticksize)
labels[1].set_size(xticksize*1.25)
if lines:
nk = int(round(n/3.0))
cnt2 = ax.contour(self[hemi+'psi']*pi/180.0+pi/2., theta,
np.array(self[var]), nk, colors='k')
#clabel(cnt2,fmt='%3i',fontsize=10)
if add_cbar:
cbarticks = MaxNLocator(7)
cbar = colorbar(cnt1, ticks=cbarticks, shrink=0.75, pad=0.08, ax=ax)
cbar.set_label(tex_label(self[var].attrs['units']))
else:
cbar=False
ax.set_xticks(xticks)
ax.set_xticklabels(lt_labels)
ax.yaxis.set_major_locator(lct)
ax.set_ylim([0,max_colat])
# Use text function to manually add pretty ticks.
ax.set_yticklabels('') # old ticks off.
opts = {'size':yticksize, 'rotation':-45, 'ha':'center', 'va':'center'}
for theta in [80.,70.,60.]:
txt = '{:02.0f}'.format(theta)+r'$^{\circ}$'
ax.text(pi/4., 90.-theta, txt, color='w', weight='heavy', **opts)
ax.text(pi/4., 90.-theta, txt, color='k', weight='light', **opts)
return fig, ax, cnt1, cbar
[docs]
class OvalDebugFile(PbData):
'''
The auroral oval calculations in RIM may spit out special debug files that
are extremely useful. This class handles reading and plotting the data
contained within those files.
'''
[docs]
def __init__(self, infile, *args, **kwargs):
super(OvalDebugFile, self).__init__(*args, **kwargs)
self.attrs['file']=infile
self._readascii()
def _readascii(self):
'''
Loads data & populates object upon instantiation.
'''
import datetime as dt
# Slurp in lines:
f = open(self.attrs['file'])
lines = f.readlines()
f.close()
# Parse header to get longitude in radians:
l = lines.pop(0)
self['lon'] = np.array(l.split('=')[-1].split(), dtype=float)* np.pi/180.
l = lines.pop(0)
# Some helper vars:
nLons = self['lon'].size
nLine = len(lines)
# Create container arrays:
self['time'] = np.zeros(nLine, dtype=object)
self['oval'] = np.zeros( (nLine, nLons) )
# Parse rest of file:
for j,l in enumerate(lines):
self['time'][j] = dt.datetime.strptime(l[:19], '%Y %m %d %H %M %S')
self['oval'][j,:] = l.split()[7:]
[docs]
def get_oval(self, time, interp=True):
'''
Given a datetime, *time*, interpolate the oval position to that time.
If *time* is outside the range of self['time'], an exception will be
raised. Linear interpolation is used unless kwarg *interp* is False.
In that case, the value of the oval nearest to *time* will be used
without interpolation.
Parameters
==========
time : datetime.datetime
The time at which the oval is requested.
Returns
=======
oval : numpy.ndarray
Oval location at time *time* in radians. Zero corresponds to local
noon.
Other Parameters
================
interp : bool
Set interpolation behavior. If **True**, linear interpolation is
used. If **False**, the oval location nearest to *time* is used
without interpolation.
Examples
========
>>>
'''
from matplotlib.dates import date2num
# If *time* is outside the bounds of self['time'], raise exception
# to avoid extrapolation.
if time<self['time'][0] or time>self['time'][-1]:
raise ValueError('Given time outside object range ' +
'and requires extrapolation')
# Turn datetimes into numbers.
time = date2num(time)
ovaltime = date2num(self['time'])
# Start by obtaining the indices of the time array that bound
index = np.arange(self['time'].size)
i1 = index[time>=ovaltime][-1] # Value before time
i2 = index[time<=ovaltime][ 0] # Value after time
# Check for exact matches:
dT1 = np.abs(ovaltime[i1]-time)
dT2 = np.abs(ovaltime[i2]-time)
if dT1==0: return self['oval'][i1]
if dT2==0: return self['oval'][i2]
# If no interpolation, just send back nearest neighbor:
if not interp:
if dT1<dT2:
return self['oval'][i1]
else:
return self['oval'][i2]
# If interpolation, get slope and y-intercept vectors:
dT = ovaltime[i2]-ovaltime[i1]
m = (self['oval'][i2]-self['oval'][i1])/dT
b = self['oval'][i2] - m*ovaltime[i2]
# Interpolate and return:
return m*time + b
[docs]
def add_oval_line(self, time, *args, **kwargs):
'''
Adds the location of the auroral oval at time *time* as a line plot on to
*target*, which must be a Matplotlib figure/axes.
If *target* not given, a new axes object is created. If *target* is
not an existing axes object, a new axes object is created and customized
to be an ionosphere polar plot.
Extra arguments/kwargs are sent to :func:`~matplotlib.pyplot.plot`.
Parameters
==========
time : integer or datetime
Sets the time at which to plot the line. If an integer is used,
the integer is used to index the internal array naively. If a
datetime object is given and is within the bounds of self['time'],
the oval location will be interpolated to *time*. Control of the
interpolation happens via the *interp* keyword.
Returns
=======
fig : matplotlib figure object
ax : matplotlib axes object
line : matplotlib line object
Other Parameters
================
target : Figure or Axes
If None (default), a new figure is generated from scratch.
If a matplotlib Figure object, a new axis is created
to fill that figure.
If a matplotlib Axes object, the plot is placed
into that axis.
loc : int
Use to specify the subplot placement of the axis
(e.g. loc=212, etc.) Used if target is a Figure or None.
Default 111 (single plot).
interp : bool
Control the behavior of time interpolation when the *time* argument
is given as a datetime object. Defaults to **True**, meaning that
oval location is interpolated in time.
Examples
========
>>>
'''
import datetime as dt
# Handle kwargs not being handed to plot:
target=None; loc=111; interp=True
if 'target' in kwargs: target=kwargs.pop('target')
if 'interp' in kwargs: interp=kwargs.pop('interp')
if 'loc' in kwargs: loc=kwargs.pop('loc')
# Set plot targets:
fig, ax = set_target(target, polar=True, loc=loc)
# Get oval interpolated in time:
if type(time) == dt.datetime:
oval = self.get_oval(time, interp=interp)
elif type(time) == int:
oval = self['oval'][time]
else:
raise TypeError('Unrecognized type for *time*:'+type(time))
# Plot oval:
line = ax.plot(self['lon']+np.pi/2., oval, *args, **kwargs)
return fig, ax, line