Source code for spacepy.pybats.bats

'''
A PyBats module for handling input, output, and visualization of
binary SWMF output files taylored to BATS-R-US-type data.

'''
import sys

import numpy as np
from spacepy.pybats import PbData, IdlFile, LogFile, calc_wrapper
from spacepy.plot import set_target, applySmartTimeTicks
from spacepy.datamodel import dmarray

# Module-level variables:
# recognized species:
mass = {'hp': 1.0, 'op': 16.0, 'he': 4.0,
        'sw': 1.0, 'o': 16.0, 'h': 1.0, 'iono': 1.0, '': 1.0}

RE = 6371000  # Earth radius in meters.

# Module-level functions:


def _calc_ndens(obj):
    '''
    Given an object of subclass :class:`~spacepy.pybats.PbData` that uses
    standard BATS-R-US variable names, calculate the number density from
    all mass density variables (i.e., all variables that end in *rho*).
    New variables are added to the object.  Variable names are constructed
    by taking the mass-density variable, *Speciesrho*, and replacing *rho*
    with *N*.  Total number density is also saved as *N*.

    Composition information is also saved by taking each species and
    calculating the percent of the total number density via
    *fracspecies* = 100% x *speciesN*/*N*.

    Many species that are implemented in multi-species and multi-fluid
    BATS-R-US equation files have known mass.  For example, *oprho* is known
    a-priori to be singly ionized oxygen mass density, so *opN* is created
    by dividing *oprho* by 16.  If the fluid/species is not recognized, it is
    assumed to be hyrogen.  The single atom/molecule mass is saved in the
    attributes of the new variable.

    This function should be called by object methods of the same name.
    It is placed at the module level because it is used by many different
    classes.

    Parameters
    ==========
    obj : :class:`~spacepy.pybats.PbData` object
       The object on which to act.

    Returns
    =======
    True

    Examples
    ========
    >>> import spacepy.pybats.bats as pbs
    >>> mhd = pbs.Bats2d('spacepy-code/spacepy/pybats/slice2d_species.out')
    >>> pbs._calc_ndens(mhd)

    '''

    species = []
    names = []

    # Get name of Rho (case sensitive check):
    rho = 'Rho'*('Rho' in obj) + 'rho'*('rho' in obj)

    # Find all species: the variable names end or begin with "rho".
    # Take care not to double-count.
    for k in obj:
        # Ends with rho?
        if (k[-3:] == rho) and (k != rho) and (k[:-3] + 'N' not in obj):
            species.append(k)
            names.append(k[:-3])
        # Begins with rho?
        if (k[:3] == rho) and (k != rho) and (k[3:] + 'N' not in obj):
            species.append(k)
            names.append(k[3:])

    # Individual number density
    for s, n in zip(species, names):
        if n.lower() in mass:
            m = mass[n.lower()]
        else:
            m = 1.0
        obj[n+'N'] = dmarray(obj[s]/m,
                             attrs={'units': '$cm^{-3}$', 'amu mass': m})

    # Total N is sum of individual  number densities.
    obj['N'] = dmarray(np.zeros(obj[rho].shape),
                       attrs={'units': '$cm^{-3}$'})
    if species:
        # Total number density:
        for n in names:
            obj['N'] += obj[n+'N']
        # Composition as fraction of total per species:
        for n in names:
            obj[n+'Frac'] = dmarray(100.*obj[n+'N']/obj['N'],
                                    {'units': 'Percent'})
    else:
        # No individual species => no composition, simple ndens.
        obj['N'] += dmarray(obj[rho], attrs={'units': '$cm^{-3}$'})


# Classes:

[docs] class BatsLog(LogFile): ''' A specialized version of :class:`~spacepy.pybats.LogFile` that includes special methods for plotting common BATS-R-US log file values, such as D$_{ST}$. '''
[docs] def fetch_obs_dst(self): ''' Fetch the observed Dst index for the time period covered in the logfile. Return *True* on success. Observed Dst is automatically fetched from the Kyoto World Data Center via the :mod:`spacepy.pybats.kyoto` module. The associated :class:`spacepy.pybats.kyoto.KyotoDst` object, which holds the observed Dst, is stored as *self.obs_dst* for future use. ''' import spacepy.pybats.kyoto as kt # Return if already obtained: if hasattr(self, 'obs_dst'): return True # Start and end time to collect observations: stime = self['time'][0] etime = self['time'][-1] # Attempt to fetch from Kyoto website: try: self.obs_dst = kt.fetch('dst', stime, etime) # Warn on failure: except BaseException as args: raise Warning('Failed to fetch Kyoto Dst: ', args) return False return True
[docs] def fetch_obs_sym(self): ''' Fetch the observed SYM-H index for the time period covered in the logfile. Return *True* on success. Observed SYM-H is automatically fetched from the Kyoto World Data Center via the :mod:`spacepy.pybats.kyoto` module. The associated :class:`spacepy.pybats.kyoto.KyotoSym` object, which holds the observed Dst, is stored as *self.obs_sym* for future use. ''' import spacepy.pybats.kyoto as kt # Return if already obtained: if hasattr(self, 'obs_sym'): return True # Start and end time to collect observations: stime = self['time'][0] etime = self['time'][-1] # Attempt to fetch from Kyoto website: try: self.obs_sym = kt.fetch('sym', stime, etime) # Warn on failure: except BaseException as args: raise Warning('Failed to fetch Kyoto Dst: ', args) return False return True
[docs] def add_dst_quicklook(self, target=None, loc=111, plot_obs=False, epoch=None, add_legend=True, plot_sym=False, dstvar=None, lw=2.0, obs_kwargs={'ls': '-.'}, sym_kwargs={'ls': '-'}, **kwargs): ''' Create a quick-look plot of Dst (if variable present in file) and compare against observations. Like all *add_\\* * methods in Pybats, the *target* kwarg determines where to place the plot. If kwarg *target* is **None** (default), a new figure is generated from scratch. If *target* is a matplotlib Figure object, a new axis is created to fill that figure at subplot location *loc* (defaults to 111). If target is a matplotlib Axes object, the plot is placed into that axis at subplot location *loc*. With newer versions of BATS-R-US, new dst-like variables are included, named 'dst', 'dst-sm', 'dstflx', etc. This subroutine will attempt to first use 'dst-sm' as it is calculated consistently with observations. If not found, 'dst' is used. Users may choose which value to use via the *dstvar* kwarg. Observed Dst and SYM-H is automatically fetched from the Kyoto World Data Center via the :mod:`spacepy.pybats.kyoto` module. The associated :class:`spacepy.pybats.kyoto.KyotoDst` or :class:`spacepy.pybats.kyoto.KyotoSym` object, which holds the observed Dst/SYM-H, is stored as *self.obs_dst* for future use. The observed line can be customized via the *obs_kwargs* kwarg, which is a dictionary of plotting keyword arguments. If kwarg *epoch* is set to a datetime object, a vertical dashed line will be placed at that time. The figure and axes objects are returned to the user. .. versionchanged:: 0.5.0 Separated kwargs for Sym-H and Dst lines. ''' from datetime import datetime # Set the correct dst value to be used. if not dstvar: if 'dst_sm' in self: dstvar = 'dst_sm' else: dstvar = 'dst' if dstvar not in self: return None, None fig, ax = set_target(target, figsize=(10, 4), loc=loc) if 'label' not in kwargs: kwargs['label'] = 'BATS-R-US $D_{ST}$ (Biot-Savart)' if 'label' not in obs_kwargs: obs_kwargs['label'] = 'Obs. Dst' if 'label' not in sym_kwargs: sym_kwargs['label'] = 'Obs. SYM-H' ax.plot(self['time'], self[dstvar], lw=lw, **kwargs) ax.hlines(0.0, self['time'][0], self['time'][-1], 'k', ':', label='_nolegend_') applySmartTimeTicks(ax, self['time']) ax.set_ylabel('D$_{ST}$ ($nT$)') ax.set_xlabel('Time from ' + self['time'][0].isoformat()+' UTC') # Add observations (Dst and/or SYM-H): if plot_obs: # Attempt to fetch observations, plot if success. if self.fetch_obs_dst(): ax.plot(self.obs_dst['time'], self.obs_dst['dst'], **obs_kwargs) applySmartTimeTicks(ax, self['time']) if plot_sym: # Attempt to fetch SYM-h observations, plot if success. if self.fetch_obs_sym(): ax.plot(self.obs_sym['time'], self.obs_sym['sym-h'], **sym_kwargs) applySmartTimeTicks(ax, self['time']) # Place vertical line at epoch: if type(epoch) == datetime: yrange = ax.get_ylim() ax.vlines(epoch, yrange[0], yrange[1], linestyles='dashed', colors='k', linewidths=1.5) ax.set_ylim(yrange) # Apply legend if add_legend: ax.legend(loc='best') if target is None: fig.tight_layout() return fig, ax
[docs] class Extraction(PbData): ''' A class for creating and visualizing extractions from other :class:`~spacepy.pybats.PbData` 2D data sets. Bilinear interpolation is used to obtain data between points. At present, this class only works with :class:`~spacepy.pybats.bats.Bats2d` objects, but will be generalized in the future. Though it can be instantiated in typical fashion, It is best to create these objects via other object methods (e.g., :func:`~spacepy.pybats.bats.Bats2d.extract`) Parameters ---------- x : float or sequence X value(s) for points at which to extract data values. y : float or sequence Y value(s) for points at which to extract data values. dataset : Bats :class:`~spacepy.pybats.bats.Bats2d` object from which to extract values. Other Parameters ---------------- var_list : string or sequence of strings List of values to extract from *dataset*. Defaults to 'all', for all values within *dataset*. '''
[docs] def __init__(self, x, y, dataset, var_list='all', *args, **kwargs): # Initialize as a PbData object. super(Extraction, self).__init__(*args, **kwargs) # Store x, y internally: # If our x, y locations are not numpy arrays, fix that. # Additionally, convert scalars to 1-element vectors. x, y = np.array(x), np.array(y) if not x.shape: x = x.reshape(1) if not y.shape: y = y.reshape(1) # Default: all variables are extracted except coordinates. if var_list == 'all': var_list = list(dataset.keys()) for v in ('x', 'y', 'z', 'grid'): if v in var_list: var_list.remove(v) elif type(var_list) is str: var_list = var_list.split() elif type(var_list) != list: var_list = [] else: raise TypeError('Kwarg var_list must be string, list, or None.') # Stash var list, dataset internally: self._var_list = var_list self._dataset = dataset # Extract along trace: self.extract(x, y)
[docs] def extract(self, xpts, ypts): # Perform actual extraction: from spacepy.pybats.batsmath import interp_2d_reg # Some convenience variables: x, y = xpts, ypts data = self._dataset for v, value in zip(data['grid'].attrs['dims'], (x, y)): self[v] = dmarray(value, attrs=data[v].attrs) # Create data object for holding extracted values. # One vector for each value w/ same units as parent object. for v in self._var_list: self[v] = dmarray(np.zeros(x.shape), attrs=data[v].attrs) # Some helpers: xAll = data[data['grid'].attrs['dims'][0]] yAll = data[data['grid'].attrs['dims'][1]] # Navigate the MHD quad tree, interpolating as we go. for k in data.qtree: # Only leafs, of course! if not data.qtree[k].isLeaf: continue # Find all points that lie in this block. # If there are none, just keep going. pts = \ (x >= data.qtree[k].lim[0]) & (x <= data.qtree[k].lim[1]) & \ (y >= data.qtree[k].lim[2]) & (y <= data.qtree[k].lim[3]) if not pts.any(): continue locs = data.qtree[k].locs for v in self._var_list: self[v][pts] = interp_2d_reg(x[pts], y[pts], xAll[locs], yAll[locs], data[v][locs])
[docs] class Stream(Extraction): ''' A class for streamlines. Contains all of the information about the streamline, including extracted variables. Upon instantiation, the object will trace through the vector field determined by the "[x/y]field" values and the Bats object "bats". Parameters ---------- bats : Bats :class:`~spacepy.pybats.bats.Bats2d` object through which to trace. xstart : float X value of location to start the trace. ystart : float Y value of location to start the trace. xfield : str Name of variable in ``bats`` which contains X values of the field yfield : str Name of variable in ``bats`` which contains Y values of the field Other Parameters ---------------- style : str Sets line style, including colors. See :meth:`set_style` for details. (Default 'mag') type : str (Default 'streamline') method : str Integration method. The default is Runge-Kutta 4 ('rk4') which gives a good blend of speed and accuracy. See the test functions in :mod:`~spacepy.pybats.trace2d` for more info. The other option is a simple Euler's method approach ('eul'). (Default 'rk4') extract : bool (Default: False) Extract variables along stream trace and save within object. maxPoints : int (Default : 20000) Maximum number of integration steps to take. var_list : string or sequence of strings (Default : 'all') List of values to extract from *dataset*. Defaults to 'all', for all values within *bats*. Notes ----- .. Not really "notes" but need to keep this section from being parsed as parameters '''
[docs] def __init__(self, bats, xstart, ystart, xfield, yfield, style='mag', type='streamline', method='rk4', var_list='all', extract=False, maxPoints=20000, *args, **kwargs): # Key values: self.xstart = xstart # X and Y starting self.ystart = ystart # points in the field. self.xvar = xfield # Strings that list the variables self.yvar = yfield # that will be used for tracing. # Descriptors: self.open = True self.status = 'open' self.method = method # Do tracing if a tracing method has been set. self.treetrace(bats, maxPoints=maxPoints) # Now, initialize as Extraction using self.x, self.y. # This handles the extraction as well as converting self.x, y into # dmarrays with the correct names. super(Stream, self).__init__(self.x, self.y, bats, var_list=var_list*extract) # Place parameters into attributes: self.attrs['start'] = [xstart, ystart] self.attrs['trace_var'] = [xfield, yfield] self.attrs['method'] = method # Set style self.set_style(style)
[docs] def set_style(self, style): ''' Set the line style either using a simple matplotlib-type style string or using a preset style type. Current types include: 'mag' : treat line as a magnetic field line. Closed lines are white, other lines are black. ''' import re # Here, we can set line color and style based on # line characteristics. Right now, only one preset is # available. if style == 'mag': if self.open: self.style = 'k-' self.color = 'k' else: self.style = 'w-' self.color = 'w' else: self.style = style col = re.match('([bgrcmykw])', style) if col: self.color = col.groups()[0] else: self.color = 'k'
[docs] def treetrace(self, bats, maxPoints=20000): ''' Trace through the vector field using the quad tree. ''' if self.method == 'euler' or self.method == 'eul': from spacepy.pybats.trace2d import trace2d_eul as trc elif self.method == 'rk4': from spacepy.pybats.trace2d import trace2d_rk4 as trc else: raise ValueError('Tracing method {} not recognized!'.format( self.method)) # Get name of dimensions in order. grid = bats['grid'].attrs['dims'] # Find starting block and set starting locations. block = bats.find_block(self.xstart, self.ystart) xfwd = [self.xstart] yfwd = [self.ystart] xnow, ynow = self.xstart, self.ystart # Trace forwards. while block: # Grab indices of all values inside current block. # Ghost cell check is for experimental testing: if hasattr(bats.qtree[block], 'ghost'): loc = bats.qtree[block].ghost # Typical approach is no ghost cell info: else: loc = bats.qtree[block].locs # Trace through this block. x, y = trc(bats[self.xvar][loc], bats[self.yvar][loc], xnow, ynow, bats[grid[0]][loc][0, :], bats[grid[1]][loc][:, 0], ds=0.01) # Update location and block: xnow, ynow = x[-1], y[-1] newblock = bats.find_block(xnow, ynow) # If we didn't leave the block, stop tracing. # Additionally, if inside rBody, stop. radnow = xnow**2+ynow**2 if (block == newblock) or radnow < bats.attrs['rbody']*0.8: block = False elif newblock: block = newblock else: block = False # Append to full trace vectors. xfwd = np.append(xfwd, x[1:]) yfwd = np.append(yfwd, y[1:]) del x, y # It's possible to get stuck swirling around across # a few blocks. If we spend a lot of time tracing, # call it quits. if xfwd.size > maxPoints: block = False # Trace backwards. Same Procedure as above. block = bats.find_block(self.xstart, self.ystart) xbwd = [self.xstart] ybwd = [self.ystart] xnow, ynow = self.xstart, self.ystart while block: if hasattr(bats.qtree[block], 'ghost'): loc = bats.qtree[block].ghost else: loc = bats.qtree[block].locs x, y = trc(bats[self.xvar][loc], bats[self.yvar][loc], xnow, ynow, bats[grid[0]][loc][0, :], bats[grid[1]][loc][:, 0], ds=-0.01) xnow, ynow = x[-1], y[-1] newblock = bats.find_block(xnow, ynow) radnow = xnow**2+ynow**2 if (block == newblock) or radnow < bats.attrs['rbody'] * .8: block = False elif newblock: block = newblock else: block = False # Append to full trace vectors. xbwd = np.append(x[::-1], xbwd) ybwd = np.append(y[::-1], ybwd) if xbwd.size > maxPoints: block = False # Trim duplicate points created when backwards tracing. # There's always at least 1 duplicate. for i in range(1, xbwd.size): if xbwd[-(i+1)]-xfwd[0] != 0: break # Combine foward and backward traces. self.x = np.append(xbwd[:-i], xfwd) self.y = np.append(ybwd[:-i], yfwd) # If planetary run w/ body: # 1) Check if line is closed to body. # 2) Trim points within body. if 'rbody' in bats.attrs: # Radial distance: r = np.sqrt(self.x**2.0 + self.y**2.0) # Closed field line? Lobe line? Set status: if (r[0] < bats.attrs['rbody']) and (r[-1] < bats.attrs['rbody']): self.open = False self.status = 'closed' elif (r[0] > bats.attrs['rbody']) and \ (r[-1] < bats.attrs['rbody']): self.open = True self.status = 'north lobe' elif (r[0] < bats.attrs['rbody']) and \ (r[-1] > bats.attrs['rbody']): self.open = True self.status = 'south lobe' # Trim the fat! limit = bats.attrs['rbody']*.8 self.x, self.y = self.x[r > limit], self.y[r > limit]
[docs] def trace(self, bats): ''' Trace through the vector field. ''' if self.method == 'euler': from spacepy.pybats.trace2d import trace2d_eul as trc elif self.method == 'rk4': from spacepy.pybats.trace2d import trace2d_rk4 as trc # Get name of dimensions in order. grid = bats['grid'].attrs['dims'] # Trace forward x1, y1 = trc(bats[self.xvar], bats[self.yvar], self.xstart, self.ystart, bats[grid[0]], bats[grid[1]]) # Trace backward x2, y2 = trc(bats[self.xvar], bats[self.yvar], self.xstart, self.ystart, bats[grid[0]], bats[grid[1]], ds=-0.1) # Join lines together such that point 0 is beginning of line # and point -1 is the end (when moving parallel to line.) self.x = np.array(x2[::-1].tolist() + x1[1:].tolist()) self.y = np.array(y2[::-1].tolist() + y1[1:].tolist()) # Check if line is closed to body. if 'rbody' in bats.attrs: r1 = np.sqrt(self.x[0]**2.0 + self.y[0]**2.0) r2 = np.sqrt(self.x[-1]**2.0 + self.y[-1]**2.0) if (r1 < bats.attrs['rbody']) and (r2 < bats.attrs['rbody']): self.open = False
[docs] def plot(self, ax, *args, **kwargs): ''' Add streamline to axes object "ax". ''' ax.plot(self.x, self.y, self.style, *args, **kwargs)
[docs] class Bats2d(IdlFile): ''' A child class of :class:`~spacepy.pybats.IdlFile` tailored to 2D BATS-R-US output. ''' # Init by calling IdlFile init and then building qotree, etc.
[docs] def __init__(self, filename, *args, blocksize=8, **kwargs): # Stash blocksize as an attribute: self.blocksize = blocksize # Create quad tree object attribute: self._qtree = None # Read file. IdlFile.__init__(self, filename, keep_case=False, *args, **kwargs) # Behavior of output files changed Jan. 2017: # Check for 'r' instead of 'rbody' in attrs. if 'r' in self.attrs and 'rbody' not in self.attrs: self.attrs['rbody'] = self.attrs['r']
[docs] def switch_frame(self, *args, **kwargs): ''' For files that have more than one data frame (i.e., ``*.outs`` files), load data from the *iframe*-th frame into the object replacing what is currently loaded. ''' # Reset our quad tree before reading our file: self._qtree = None # Switch frames using parent method: super(Bats2d, self).switch_frame(*args, **kwargs)
@property def qtree(self): if self._qtree is None: import spacepy.pybats.qotree as qo # Parse grid into quad tree. if self['grid'].attrs['gtype'] != 'Regular': xdim, ydim = self['grid'].attrs['dims'][0:2] try: points = np.array([self[xdim], self[ydim]]) self._qtree = qo.QTree(points, blocksize=self.blocksize) except Exception: from traceback import print_exc print_exc() self._qtree = False self.find_block = lambda: False else: self._qtree = False self.find_block = lambda: False return self._qtree @property def find_block(self): if self.qtree: return self._qtree.find_leaf else: return lambda: False #################### # CALCULATIONS ####################
[docs] @calc_wrapper def calc_temp(self, units='eV'): ''' Calculate plasma temperature for each fluid. Number density is calculated using *calc_ndens* if it hasn't been done so already. Temperature is obtained via density and pressure through the simple relationship P=nkT. Use the units kwarg to set output units. Current choices are KeV, eV, and K. Default is eV. ''' from spacepy.datamodel import dmarray units = units.lower() # Create dictionary of unit conversions. conv = {'ev': 6241.50935, # nPa/cm^3 --> eV. 'kev': 6.24150935, # nPa/cm^3 --> KeV. 'k': 72429626.47} # nPa/cm^3 --> K. # Calculate number density if not done already. if 'N' not in self: self.calc_ndens() # Find all number density variables. for key in list(self.keys()): # Next variable if not number density: if key[-1] != 'N': continue # Next variable if no matching pressure: if not key[:-1]+'p' in self: continue self[key[:-1]+'t'] = dmarray( conv[units] * self[key[:-1]+'p']/self[key], attrs={'units': units})
[docs] @calc_wrapper def calc_b(self): ''' Calculates total B-field strength using all three B components. Retains units of components. Additionally, the unit vector b-hat is calculated as well. ''' if 'b' in self: return self['b'] = np.sqrt(self['bx']**2 + self['by']**2 + self['bz']**2) self['b'].attrs = {'units': self['bx'].attrs['units']} self['bx_hat'] = self['bx'] / self['b'] self['by_hat'] = self['by'] / self['b'] self['bz_hat'] = self['bz'] / self['b'] self['bx_hat'].attrs = {'units': 'unitless'} self['by_hat'].attrs = {'units': 'unitless'} self['bz_hat'].attrs = {'units': 'unitless'}
[docs] @calc_wrapper def calc_j(self): ''' Calculates total current density strength using all three J components. Retains units of components, stores in self['j'] ''' self['j'] = np.sqrt(self['jx']**2 + self['jy']**2.0 + self['jz']**2) self['j'].attrs = {'units': self['jx'].attrs['units']}
[docs] @calc_wrapper def calc_uperp(self): ''' Calculate the magnitude of the velocity perpendicular to the magnetic field: $\\vec{U} \\times \\hat{b}$. Result maintains units of velocity. Values are calculated for each fluid and stored as self['u_perp'] (using species prefixes as needed). Notes ===== .. versionadded:: 0.5.0 ''' # Ensure b_hat is calculated: self.calc_b() # Get all fluid species variables. Save in new list. species = [] for k in self: if (k[-2:]) == 'ux': species.append(k[:-2]) # Calculate perpendicular velocity. Separate step to avoid # changing dictionary while looping over keys. for s in species: # Build components: ux = self[s+'uy']*self['bz_hat']-self[s+'uz']*self['by_hat'] uy = self[s+'uz']*self['bx_hat']-self[s+'ux']*self['bz_hat'] uz = self[s+'ux']*self['by_hat']-self[s+'uy']*self['bx_hat'] # Get magnitude: self[s+'u_perp'] = np.sqrt(ux**2+uy**2+uz**2)
[docs] @calc_wrapper def calc_upar(self): ''' Calculate $\\vec{U} \\cdot \\vec{B}$ and store as 'upar' in *self*. Result maintains units of velocity. Values are calculated for each fluid. Values arestored as self['u_par']; species prefixes are used for multi-species/fluid files. Notes ===== .. versionadded:: 0.5.0 ''' # Ensure b_hat is calculated: self.calc_b() # Get all fluid species variables. Save in new list. species = [] for k in self: if (k[-2:]) == 'ux': species.append(k[:-2]) # Calculate U dot B. Separate step to avoid # changing dictionary while looping over keys. for s in species: self[s+'u_par'] = \ self[s+'ux']*self['bx_hat'] \ + self[s+'uy']*self['by_hat'] \ + self[s+'uz']*self['bz_hat']
[docs] @calc_wrapper def calc_E(self): ''' Calculates the MHD electric field, -UxB. Works for default MHD units of nT and km/s; if these units are not correct, an exception will be raised. Stores E in mV/m. Values are saved as self['Ex'], self['Ey'], self['Ez'], and self['E']. ''' # Some quick declarations for more readable code. ux, uy, uz = self['ux'], self['uy'], self['uz'] bx, by, bz = self['bx'], self['by'], self['bz'] # Check units. Should be nT(=Volt*s/m^2) and km/s. if (bx.attrs['units'] != 'nT') or (ux.attrs['units'] != 'km/s'): raise Exception('Incorrect units! Should be km/s and nT.') # Calculate; return in millivolts per meter self['Ex'] = -1.0*(uy*bz - uz*by) / 1000.0 self['Ey'] = -1.0*(uz*bx - ux*bz) / 1000.0 self['Ez'] = -1.0*(ux*by - uy*bx) / 1000.0 self['Ex'].attrs = {'units': 'mV/m'} self['Ey'].attrs = {'units': 'mV/m'} self['Ez'].attrs = {'units': 'mV/m'} # Total magnitude. self['E'] = np.sqrt(self['Ex']**2+self['Ey']**2+self['Ez']**2)
[docs] @calc_wrapper def calc_ndens(self): ''' Calculate number densities for each fluid. Species mass is ascertained via recognition of fluid name (e.g. OpRho is clearly oxygen). A full list of recognized fluids/species can be found by exploring the dictionary *mass* found in :mod:`~spacepy.pybats.bats`. Composition is also calculated as percent of total number density. New values are saved using the keys *speciesN* (e.g. *opN*) and *speciesFrac* (e.g. *opFrac*). ''' # Use shared function. _calc_ndens(self)
[docs] @calc_wrapper def calc_beta(self): ''' Calculates plasma beta (ratio of plasma to magnetic pressure, indicative of who - plasma or B-field - is "in charge" with regards to flow. Assumes: -pressure in units of nPa -B in units of nT. Resulting value is unitless. Values where b_total = zero are set to -1.0 in the final array. Values are stored as self['beta']. ''' if 'b' not in self: self.calc_b() mu_naught = 4.0E2 * np.pi # Mu_0 x unit conversion (nPa->Pa, nT->T) temp_b = self['b']**2.0 temp_b[temp_b < 1E-8] = -1.0*mu_naught*self['p'][temp_b == 0.0] temp_beta = mu_naught*self['p']/temp_b self['beta'] = temp_beta self['beta'].attrs = {'units': 'unitless'}
[docs] @calc_wrapper def calc_jxb(self): ''' Calculates the JxB force assuming: -Units of J are uA/m2, units of B are nT. Under these assumptions, the value calculated is force density with units of nN/m^3. Values are stored as 'jb' (magnitude) and 'jbx', 'jby', 'jbz'. ''' from spacepy.datamodel import dmarray # Unit conversion (nT, uA, cm^-3 -> nT, A, m^-3) to nN/m^3. conv = 1E-6 # Calculate cross product, convert units. self['jbx'] = dmarray((self['jy']*self['bz'] - self['jz']*self['by'])*conv, {'units': 'nN/m^3'}) self['jby'] = dmarray((self['jz']*self['bx'] - self['jx']*self['bz'])*conv, {'units': 'nN/m^3'}) self['jbz'] = dmarray((self['jx']*self['by'] - self['jy']*self['bx'])*conv, {'units': 'nN/m^3'}) self['jb'] = dmarray(np.sqrt(self['jbx']**2 + self['jby']**2 + self['jbz']**2), {'units': 'nN/m^3'})
[docs] @calc_wrapper def calc_alfven(self): ''' Calculate the Alfven speed, B/(mu*rho)^(1/2) in km/s. This is performed for each species and the total fluid. The variable is saved under key "alfven" in self.data. ''' from spacepy.datamodel import dmarray if 'b' not in self: self.calc_b() # M_naught * conversion from #/cm^3 to kg/m^3 mu_naught = 4.0E-7 * np.pi * 1.6726E-27 * 1.0E6 # Get all rho-like variables. Save in new list. rho_names = [] for k in self: if (k[-3:]) == 'rho': rho_names.append(k) # Calculate Alfven speed in km/s. Separate step to avoid # changing dictionary while looping over keys. for k in rho_names: self[k[:-3]+'alfven'] = dmarray(self['b']*1E-12 / np.sqrt(mu_naught*self[k]), attrs={'units': 'km/s'})
@calc_wrapper def _calc_divmomen(self): ''' Calculate the divergence of momentum, i.e. $\\rho(u \\dot \\nabla)u$. This is currently exploratory. ''' from spacepy.datamodel import dmarray from spacepy.pybats.batsmath import d_dx, d_dy if self.qtree is False: raise ValueError('calc_divmomen requires a valid qtree') # Create empty arrays to hold new values. size = self['ux'].shape self['divmomx'] = dmarray(np.zeros(size), {'units': 'nN/m3'}) self['divmomz'] = dmarray(np.zeros(size), {'units': 'nN/m3'}) # Units! c1 = 1000. / 6371.0 # km2/Re/s2 -> m/s2 c2 = 1.6726E-21 # AMU/cm3 -> kg/m3 c3 = 1E9 # N/m3 -> nN/m3. for k in self.qtree: # Calculate only on leafs of quadtree. if not self.qtree[k].isLeaf: continue # Extract values from current leaf. leaf = self.qtree[k] ux = self['ux'][leaf.locs] uz = self['uz'][leaf.locs] self['divmomx'][leaf.locs] = ux*d_dx(ux, leaf.dx) + \ uz*d_dy(ux, leaf.dx) self['divmomz'][leaf.locs] = ux*d_dx(uz, leaf.dx) + \ uz*d_dy(uz, leaf.dx) # Unit conversion. self['divmomx'] *= self['rho']*c1*c2*c3 self['divmomz'] *= self['rho']*c1*c2*c3
[docs] @calc_wrapper def calc_vort(self, conv=1000./RE): ''' Calculate the vorticity (curl of bulk velocity) for the direction orthogonal to the cut plane. For example, if output file is a cut in the equatorial plane (GSM X-Y plane), only the z-component of the curl is calculated. Output is saved as self['wD'], where D is the resulting dimension (e.g., 'wz' for the z-component of vorticity in the X-Y plane). Vorticity is calculated for total fluid and by-species for multi-fluid output files. Parameters ========== None Other Parameters ================ conv : float Required unit conversion such that output units are 1/s. Defaults to 1/RE (in km), which assumes grid is in RE and velocity is in km/s. ''' from spacepy.pybats.batsmath import d_dx, d_dy if self.qtree is False: raise ValueError('calc_vort requires a valid qtree') # Determine which direction to calculate based on what direction # is not present. Save appropriate derivative operators, order # useful directions, create new variable name. dims = self['grid'].attrs['dims'] if 'x' not in dims: w = 'wx' dim1, dim2 = 'z', 'y' dx1, dx2 = d_dy, d_dx elif 'y' not in dims: w = 'wy' dim1, dim2 = 'x', 'z' dx1, dx2 = d_dy, d_dx else: w = 'wz' dim1, dim2 = 'x', 'y' dx1, dx2 = d_dy, d_dx # Get all fluid species variables. Save in new list. species = [] for k in self: if (k[-2:]) == 'ux': species.append(k[:-2]) # Calculate vorticity by species. for s in species: # Create new arrays to hold curl. size = self[s+'ux'].shape self[s+w] = dmarray(np.zeros(size), {'units': '1/s'}) # Navigate quad tree, calculate curl at every leaf. for k in self.qtree: # Plot only leafs of the tree. if not self.qtree[k].isLeaf: continue # Get location of points and extract velocity: leaf = self.qtree[k] u1 = self[s+'u'+dim1][leaf.locs] u2 = self[s+'u'+dim2][leaf.locs] # Calculate curl self[s+w][leaf.locs] = conv * (dx1(u1, leaf.dx) - dx2(u2, leaf.dx))
[docs] @calc_wrapper def calc_gradP(self): ''' Calculate the pressure gradient force. ''' from spacepy.datamodel import dmarray from spacepy.pybats.batsmath import d_dx, d_dy if self.qtree is False: raise ValueError('calc_gradP requires a valid qtree') if 'p' not in self: raise KeyError('Pressure not found in object') # Create new arrays to hold pressure. dims = self['grid'].attrs['dims'] size = self['p'].shape self['gradP'] = dmarray(np.zeros(size), {'units': 'nN/cm^3'}) for d in dims: self['gradP_'+d] = dmarray(np.zeros(size), {'units': 'nN/m^3'}) for k in self.qtree: # Plot only leafs of the tree. if not self.qtree[k].isLeaf: continue # Extract leaf; place pressure into 2D array. leaf = self.qtree[k] z = self['p'][leaf.locs] # Calculate derivatives; place into new dmarrays. # Unit conversion: P in nPa => gradP in nN/m3, dx=Re # Convert to nN/m3 by multiplying by 6378000m**-1. # Clever indexing maps values back to "unordered" array so that # values can be plotted like all others. conv = 1.0/-6378000.0 self['gradP_'+dims[0]][leaf.locs] = d_dx(z, leaf.dx)*conv self['gradP_'+dims[1]][leaf.locs] = d_dy(z, leaf.dx)*conv # Scalar magnitude: for d in dims: self['gradP'] += self['gradP_'+d]**2 self['gradP'] = np.sqrt(self['gradP'])
[docs] @calc_wrapper def calc_utotal(self): ''' Calculate bulk velocity magnitude: $u^2 = u_X^2 + u_Y^2 + u_Z^2$. This is done on a per-fluid basis. ''' from spacepy.datamodel import dmarray species = [] # Find all species, the variable names end in "ux". for k in self: if (k[-2:] == 'ux') and (k[:-2]+'u' not in self): species.append(k[:-2]) units = self['ux'].attrs['units'] for s in species: self[s+'u'] = dmarray(np.sqrt(self[s+'ux']**2 + self[s+'uy']**2 + self[s+'uz']**2), attrs={'units': units})
@calc_wrapper def _calc_Ekin(self, units='eV'): ''' Calculate average kinetic energy per particle using $E=\frac{1}{2}mv^2$. Note that this is not the same as energy density. Units are $eV$. ''' from spacepy.datamodel import dmarray raise Warning("This calculation is unverified.") conv = 0.5 * 0.0103783625 # km^2-->m^2, amu-->kg, J-->eV. if units.lower == 'kev': conv = conv/1000.0 species = [] # Find all species, the variable names end in "rho". for k in self: if (k[-3:] == 'rho') and (k[:-3]+'Ekin' not in self): species.append(k[:-3]) for s in species: # THIS IS WRONG HERE: 1/2mV**2? Notsomuch. self[s+'Ekin'] = dmarray(np.sqrt(self[s+'ux']**2 + self[s+'uy']**2 + self[s+'uz']**2) * conv * mass[s.lower()], attrs={'units': units})
[docs] def calc_all(self, exclude=[]): ''' Perform all variable calculations (e.g. calculations that begin with "calc"). Any exceptions raised by functions that could not be peformed (typicaly from missing variables) are discarded. ''' for command in dir(self): if (command[0:5] == 'calc_') and (command != 'calc_all') \ and (command not in exclude): try: eval('self.'+command+'()') except AttributeError: raise Warning('Did not perform {0}: {1}'.format( command, sys.exc_info()[0]))
##################### # Other calculations #####################
[docs] def gradP_regular(self, cellsize=None, dim1range=-1, dim2range=-1): ''' Calculate pressure gradient on a regular grid. Note that if the Bats2d object is not on a regular grid, one of two things will happen. If kwarg cellsize is set, the value of cellsize will be used to call self.regrid and the object will be regridded using a cellsize of cellsize. Kwargs dim1range and dim2range can be used in the same way they are used in self.regrid to restrict the regridding to a smaller domain. If cellsize is not set and the object is on an irregular grid, an exception is raised. The gradient is calculated using numpy.gradient. The output units are force density (N/m^3). Three variables are added to self.data: gradp(dim1), gradp(dim2), gradp. For example, if the object is an equatorial cut, the variables gradpx, gradpy, and gradp would be added representing the gradient in each direction and then the magnitude of the vector. ''' if self.gridtype != 'Regular': if not cellsize: raise ValueError('Grid must be regular or ' + 'cellsize must be given.') self.regrid(cellsize, dim1range=dim1range, dim2range=dim2range) # Order our dimensions alphabetically. newvars = [] for key in sorted(self.grid.keys()): newvars.append('gradp'+key) dx = self.resolution * 6378000.0 # RE to meters p = self['p']*10E-9 # nPa to Pa self[newvars[0]], self[newvars[1]] = np.gradient(p, dx, dx) self['gradp'] = np.sqrt(self[newvars[0]]**2.0 + self[newvars[1]]**2.0)
[docs] def cfl(self, dt, xcoord='x', ycoord='z'): """ Calculate the CFL number in each cell given time step dt. Result is stored in self['cfl']. """ if 'u' not in self: self.calc_utotal() cfl = np.zeros(self['u'].shape) for key in list(self.qtree.keys()): child = self.qtree[key] if not child.isLeaf: continue pts = np.where(np.logical_and.reduce((self[xcoord] >= child.lim[0], self[xcoord] <= child.lim[1], self[ycoord] >= child.lim[2], self[ycoord] <= child.lim[3]) )) cfl[pts] = self['u'][pts]*dt/child.dx self['cfl'] = dmarray(cfl, attrs={'units': ''})
[docs] def vth(self, m_avg=3.1): """ Calculate the thermal velocity. m_avg denotes the average ion mass in AMU. Result is stored in self['vth']. """ m_avg_kg = m_avg*1.6276e-27 ndensity = self['rho']/m_avg*1e6 self['vth'] = dmarray(np.sqrt(self['p']*1e-9/ndensity/(m_avg_kg)) / 1000, attrs={'units': 'km/s'})
[docs] def gyroradius(self, velocities=('u', 'vth'), m_avg=3.1): """ Calculate the ion gyroradius in each cell. velocities to use in calculating the gyroradius are listed by name in the sequence argument velocities. If more than one variable is given, they are summed in quadrature. m_avg denotes the average ion mass in AMU. Result is stored in self['gyroradius'] """ if 'vth' in velocities: try: self['vth'] except KeyError: self.vth() if 'u' in velocities and 'u' not in self: self.calc_utotal() velocities_squared_sum = self[velocities[0]]**2 for vname in velocities[1:]: velocities_squared_sum += self[vname]**2 v = np.sqrt(velocities_squared_sum)*1000 if 'b' not in self: self.calc_b() B = self['b']*1e-9 m_avg_kg = m_avg*1.6276e-27 q = 1.6022e-19 self['gyroradius'] = dmarray(m_avg_kg*v/(q*B)/6378000, attrs={'units': 'Re'})
[docs] def plasma_freq(self, m_avg=3.1): """ Calculate the ion plasma frequency. m_avg denotes the average ion mass in AMU. Result is stored in self['plasm_freq']. """ m_avg_kg = m_avg*1.6276e-27 ndensity = self['rho']/m_avg*1e6 q = 1.6022e-19 self['plasma_freq'] = dmarray(np.sqrt(4*np.pi*ndensity*q**2/m_avg_kg), attrs={'units': 'rad/s'})
[docs] def inertial_length(self, m_avg=3.1): """ Calculate the ion inertial length. m_avg denotes the average ion mass in AMU. Result is stored in self['inertial_length']. """ try: self['plasma_freq'] except KeyError: self.plasma_freq(m_avg=m_avg) if 'alfven' not in self: self.calc_alfven() self['inertial_length'] = dmarray(self['alfven']/self['plasma_freq'] / 6378000, attrs={'units': 'Re'})
[docs] def regrid(self, cellsize=1.0, dim1range=-1, dim2range=-1, debug=False): ''' Re-bin data to regular grid of spacing cellsize. Action is performed on all data entries in the bats2d object. ''' from matplotlib.mlab import griddata if self['grid'].attrs['gtype'] == 'Regular': return # Order our dimensions alphabetically. dims = self['grid'].attrs['dims'] if debug: print("Ordered dimensions: ", dims) # Check to see if dimranges are 2-element lists. # If not, either set defaults or raise exceptions. if dim1range == -1: dim1range = [self[dims[0]].min(), self[dims[0]].max()] else: if isinstance(dim1range, (type(()), type([]))): if len(dim1range) != 2: raise ValueError('dim1range must have two elements!') else: raise TypeError('dim1range must be a tuple or list!') if dim2range == -1: dim2range = [self[dims[1]].min(), self[dims[1]].max()] else: if isinstance(dim2range, (type(()), type([]))): if len(dim2range) != 2: raise ValueError('dim2range must have two elements!') else: raise TypeError('dim2range must be a tuple or list!') if debug: print('%s range = %f, %f' % (dims[0], dim1range[0], dim1range[1])) print('%s range = %f, %f' % (dims[1], dim2range[0], dim2range[1])) # Now, Regrid. grid1 = np.arange(dim1range[0], dim1range[1]+cellsize, cellsize) grid2 = np.arange(dim2range[0], dim2range[1]+cellsize, cellsize) for key in self: # Skip grid-type entries. if key in (self['grid'].attrs['dims']+['grid']): continue self[key] = griddata(self[dims[0]], self[dims[1]], self[key], grid1, grid2) # Change grid, gridtype, gridsize, and npoints to match new layout. self['grid'].attrs['gtype'] = 'Regular' self['grid'].attrs['npoints'] = len(grid1) * len(grid2) self['grid'].attrs['resolution'] = cellsize self[dims[0]] = grid1 self[dims[1]] = grid2
############################# # EXTRACTION/INTERPOLATION #############################
[docs] def extract(self, x, y, **kwargs): ''' For x, y of a 1D curve, extract values along that curve and return slice as a new :class:`~spacepy.pybats.bats.Extraction` object. Valid keyword arguments are the same as for :class:`~spacepy.pybats.bats.Extraction`. ''' return Extraction(x, y, self, **kwargs)
###################### # TRACING TOOLS ######################
[docs] def get_stream(self, x, y, xvar, yvar, method='rk4', style='mag', maxPoints=40000, extract=False): ''' Trace a 2D streamline through the domain, returning a Stream object to the caller. x and y set the starting point for the tracing. xvar and yvar are string keys to self.data that define the vector field through which this function traces. The method kwarg sets the numerical method to use for the tracing. Default is Runge-Kutta 4 (rk4). ''' startvals = [x, y] dims = self['grid'].attrs['dims'] for v, d in zip(startvals, dims): if v < self[d].min() or v > self[d].max(): raise ValueError('Start value {} out of range for variable {}.' .format(v, d)) stream = Stream(self, x, y, xvar, yvar, style=style, maxPoints=maxPoints, method=method, extract=extract) return stream
###################### # VISUALIZATION TOOLS ######################
[docs] def add_grid_plot(self, target=None, loc=111, do_label=True, do_fill=True, show_nums=False, show_borders=True, cmap='jet_r', title='BATS-R-US Grid Layout'): ''' Create a plot of the grid resolution by coloring regions of constant resolution. Kwarg "target" specifies where to place the plot and can be a figure, an axis, or None. If target is a figure, a new subplot is created. The subplot location is set by the kwarg "loc", which defaults to 111. If target is an axis, the plot is placed into that axis object. If target is None, a new figure and axis are created and used to display the plot. Resolution labels can be disabled by setting kwarg do_label to False. Plot title is set using the 'title' kwarg, defaults to 'BATS-R-US Grid Layout'. Note that if target is not an axis object, the axis will automatically flip the direction of positive X GSM and turn on equal aspect ratio. In other words, if you want a customized axis, it's best to create one yourself. Figure and axis, even if none given, are returned. Parameters ---------- target : Matplotlib Figure or Axes object Set plot destination. Defaults to new figure. loc : 3-digit integer Set subplot location. Defaults to 111. do_label : bool Adds resolution legend to righthand margin. Defaults to True. do_fill : bool If true, fill blocks with color indicating grid resolution. show_nums : bool Adds quadtree values to each region. Useful for debugging. Defaults to False. show_borders : True Show black borders around each quadtree leaf. Defaults to True. cmap : string Sets the color map used to color each region. Must be a Matplotlib named colormap. Defaults to 'jet_r'. title : string Sets the title at the top of the plot. Defaults to 'BATS-R-US Grid Layout'. ''' if self['grid'].attrs['gtype'] == 'Regular': raise ValueError('Function not compatable with regular grids') # Get dimensions over which we shall plot. xdim, ydim = self['grid'].attrs['dims'][0:2] # Set ax and fig based on given target. fig, ax = set_target(target, figsize=(10, 10), loc=loc) ax.set_aspect('equal') # Set plot range based on quadtree. ax.set_xlim([self.qtree[1].lim[0], self.qtree[1].lim[1]]) ax.set_ylim([self.qtree[1].lim[2], self.qtree[1].lim[3]]) # Plot. if show_borders: for key in list(self.qtree.keys()): self.qtree[key].plotbox(ax) self.qtree.plot_res(ax, tag_leafs=show_nums, do_label=do_label, cmap=cmap, do_fill=do_fill) # Customize plot. ax.set_xlabel('GSM %s' % xdim.upper()) ax.set_ylabel('GSM %s' % ydim.upper()) ax.set_title(title) if 'rbody' in self.attrs or 'body' in self.attrs: self.add_body(ax) return fig, ax
[docs] def add_stream_scatter(self, xcomp, ycomp, nlines=100, target=None, loc=111, method='rk4', maxPoints=1E6, xlim=None, ylim=None, narrow=0, arrsize=12, arrstyle='->', start_points=None, **kwargs): ''' Add a set of stream traces to a figure or axes that are distributed evenly but randomly throughout the plot domain. Lines will be seeded randomly over a given spatial range given by ``xlim`` and ``ylim`` **OR** the range of the axes (if ``target`` is set to a non-empty axes object) **OR** over the entire object domain (in that order). Extra keyword args are handed to matplotlib's LineCollection object: :class:`matplotlib.collections.LineCollection`. Parameters ---------- xcomp : string The first component of the vector field to trace (e.g., 'bx'). ycomp : string The second component of the vector field to trace (e.g., 'bz'). Other Parameters ---------------- target : Matplotlib Figure or Axes object Set plot destination. Defaults to new figure. loc : 3-digit integer Set subplot location. Defaults to 111. xlim : Two-element list/tuple Set the range in 1st dimension over which lines will be seeded. ylim : Two-element list/tuple Set the range in 2nd dimension over which lines will be seeded. nlines : int Number of stream lines to create; default is 100. start_points : nlinesx2 array Set start_points to define starting location of traces instead of using random points. This is useful for creating timeseries of plots. maxPoints : int Set the maximum number of points in a single trace. Defaults to 1E6. narrow : int Add "n" arrows to each line to indicate direction. Default is zero, or no lines. If narrow=1, arrows will be placed at *start_points*. arrstyle : string Set the arrow style in the same manner as Matplotlib's annotate function. Default is '->'. arrsize : int Set the size, in points, of each directional arrow. Default is 12. Returns ------- fig : matplotlib Figure object ax : matplotlib Axes object collect : matplotlib Collection object of trace results start_points : nlines x 2 array of line starting points ''' from numpy.random import sample from matplotlib.collections import LineCollection from spacepy.plot import add_arrows # Set ax and fig based on given target. fig, ax = set_target(target, figsize=(10, 10), loc=loc) # Try to determine the order of the dimensions used: dims = self['grid'].attrs['dims'] # Default to standard order. flip = False for letters in zip(xcomp, ycomp): # Check for reverse order. if letters == dims[::-1]: flip = True # flip it! # Set if using the axes limits is a viable option for setting limits # for region over which to seed lines: use_ax_lims = False if type(target) == type(ax): # Is this a new, empty axes object? Check for any relevant artists: use_ax_lims = bool(ax.texts) or bool(ax.containers) \ or bool(ax.lines) or bool(ax.patches) or bool(ax.images) \ or bool(ax.artists) # Set range over which to place lines. Use keyword values if provided # OR subset of axes ranges that fit in domain (if axes are reasonable) if xlim is None: xlim = [self[dims[0]].min(), self[dims[0]].max()] if use_ax_lims: axlim = ax.get_xlim() xlim = [max(xlim[0], axlim[0]), min(xlim[1], axlim[1])] if ylim is None: ylim = [self[dims[1]].min(), self[dims[1]].max()] if use_ax_lims: axlim = ax.get_ylim() ylim = [max(ylim[0], axlim[0]), min(ylim[1], axlim[1])] # If initial source points not given, create a random set: if start_points is None: # Get random points. start_points = sample([nlines, 2]) # Scale to limits: start_points[:, 0] = (xlim[1]-xlim[0])*start_points[:, 0]+xlim[0] start_points[:, 1] = (ylim[1]-ylim[0])*start_points[:, 1]+ylim[0] else: nlines = start_points.shape[-1] # Extract stream traces, organize x and y coords: lines = [] for xstart, ystart in start_points: # Some index errors crop up from time to time. # While a better solution is dug up, we use a try # block for the time being. try: stream = self.get_stream(xstart, ystart, xcomp, ycomp, method=method, maxPoints=maxPoints) except IndexError: continue iflip = 1-2*flip lines.append(np.array([stream.x, stream.y][::iflip]).transpose()) # Create line collection & plot. collect = LineCollection(lines, **kwargs) ax.add_collection(collect) # Set the plot limits to match ax.set_xlim(xlim) ax.set_ylim(ylim) # Add arrows if requested. If one point per line, use starting points. # Otherwise, distribute arrows along lines. if narrow == 1: add_arrows(collect, n=narrow, size=arrsize, positions=start_points, style=arrstyle) elif narrow > 1: add_arrows(collect, n=narrow, size=arrsize, style=arrstyle) return fig, ax, collect, start_points
[docs] def find_earth_lastclosed(self, tol=np.pi/360., method='rk4', max_iter=100, debug=False): ''' For Y=0 cuts, attempt to locate the last-closed magnetic field line for both day- and night-sides. This is done using a bisection approach to precisely locate the transition between open and closed geometries. The method stops once this transition is found within a latitudinal tolerance of *tol*, which defaults to $\\pi/360.$, or one-half degree. The tracing *method* can be set via keyword and defaults to 'rk4' (4th order Runge Kutta, see :class:`~spacepy.pybats.bats.Stream` for more information). The maximum number of iterations the algorithm will take is set by *max_iter*, which defaults to 100. Latitudinal footprints of the last closed field lines at the inner boundary (not the ionosphere!) are also returned. This method returns 5 objects: * The dipole tilt in radians * A tuple of the northern/southern hemisphere polar angle of footpoints for the dayside last-closed field line. * A tuple of the northern/southern hemisphere polar angle of footpoints for the nightside last-closed field line. * The dayside last-closed field line as a :class:`~spacepy.pybats.bats.Stream` object. * The nightside last-closed field line as a :class:`~spacepy.pybats.bats.Stream` object. In each case, the angle is defined as elevation from the positive x-axis, in radians. ''' # Get the dipole tilt by tracing a field line near the inner # boundary. Find the max radial distance; tilt angle == angle off # equator of point of min R (~=max |B|). x_small = self.attrs['rbody']*-1.2 # check nightside. stream = self.get_stream(x_small, 0, 'bx', 'bz', method=method) r = stream.x**2 + stream.y**2 loc = r == r.max() tilt = np.arctan(stream.y[loc]/stream.x[loc])[0] if debug: print('Dipole is tilted {} degress above the z=0 plane.'.format( tilt*180./np.pi)) # Dayside- start by tracing from plane of min |B| and perp. to that: R = self.attrs['rbody']*1.15 s1 = self.get_stream(R*np.cos(tilt), R*np.sin(tilt), 'bx', 'bz', method=method) # Get initial angle and step. theta = tilt dTheta = np.pi/4. # Initially, search 90 degrees. nIter = 0 while (dTheta > tol) or (s1.open): nIter += 1 # Are we closed or open? Day or nightside? closed = not s1.open # open or closed? isNig = s1.x.mean() < 0 # line on day or night side? isDay = not isNig # Adjust the angle towards the open-closed boundary. theta += (closed and isDay) * dTheta # adjust nightwards. theta -= (s1.open or isNig) * dTheta # adjust daywards. # Trace at the new theta to further restrict angular range: s1 = self.get_stream(R*np.cos(theta), R*np.sin(theta), 'bx', 'bz', method=method) # Reduce angular step: dTheta /= 2. if nIter > max_iter: if debug: print('Did not converge before reaching max_iter') break # Possible to land on open or nightside line. # If this happens, inch back to dayside. isNig = s1.x.mean() < 0 while (s1.open or isNig): theta -= tol / 2 # inch daywards. s1 = self.get_stream(R*np.cos(theta), R*np.sin(theta), 'bx', 'bz', method=method) isNig = s1.x.mean() < 0 # Use last line to get southern hemisphere theta: npts = int(s1.x.size/2) r = np.sqrt(s1.x**2+s1.y**2) # Distance from origin. # This loc finds the point(s) nearest to Rbody. loc = np.abs(r-self.attrs['rbody']) == np.min(np.abs( r[:npts]-self.attrs['rbody'])) # point closest to IB. xSouth, ySouth = s1.x[loc], s1.y[loc] # "+ 0" syntax is to quick-copy object. theta_day = [theta+0, 2*np.pi+np.arctan(ySouth/xSouth)[0]+0] day = s1 # Nightside: Use more points in tracing (lines are long!) theta += tol/2.0 # Nudge nightwards. # Set dTheta to half way between equator and dayside last-closed: dTheta = (np.pi+tilt-theta)/2. nIter = 0 while (dTheta > tol) or (s1.open): nIter += 1 s1 = self.get_stream(R*np.cos(theta), R*np.sin(theta), 'bx', 'bz', method=method, maxPoints=1E6) # Closed? Nightside? closed = not s1.open isNig = s1.x.mean() < 0 isDay = not isNig theta -= (closed and isNig) * dTheta # closed? move poleward. theta += (s1.open or isDay) * dTheta # open? move equatorward. # Don't cross over into dayside territory. if theta < theta_day[0]: theta = theta_day[0]+tol s1 = self.get_stream(R*np.cos(theta), R*np.sin(theta), 'bx', 'bz', method=method, maxPoints=1E6) if debug: print('No open flux over polar cap.') break dTheta /= 2. if nIter > max_iter: if debug: print('Did not converge before reaching max_iter') break # Use last line to get southern hemisphere theta: npts = int(s1.x.size/2) # Similar to above for dayside. r = np.sqrt(s1.x**2+s1.y**2) loc = np.abs(r-self.attrs['rbody']) == np.min(np.abs( r[:npts]-self.attrs['rbody'])) xSouth, ySouth = s1.x[loc], s1.y[loc] theta_night = [theta+0, 2*np.pi+np.arctan2(ySouth, xSouth)[0]+0] night = s1 # plt.plot(s1.x, s1.y, 'r-') return tilt, theta_day, theta_night, day, night
[docs] def add_b_magsphere(self, target=None, loc=111, style='mag', DoLast=True, DoOpen=True, compX='bx', compY='bz', narrow=0, arrsize=12, method='rk4', tol=np.pi/720., DoClosed=True, colors=None, linestyles=None, maxPoints=1E6, nOpen=5, nClosed=15, arrstyle='->', add_body=False, **kwargs): ''' Create an array of field lines closed to the central body in the domain. Add these lines to Matplotlib target object *target*. If no *target* is specified, a new figure and axis are created. Note that this should currently only be used for GSM y=0 cuts of the magnetosphere. A tuple containing the figure, axes, and LineCollection object is returned. Basic styling (color and linestyle) can be handled with the *style*, *colors*, and *linestyles* kwargs. *style* can accept style names as defined in :class:`~spacepy.pybats.bats.Stream`, which colors and styles lines based on characteristics (e.g., open, closed). The default is 'mag', which colors open lines black and closed lines white. Alternatively, this kwarg works in a similar manner as it does in :func:`~matplotlib.pyplot.plot`, i.e., a string code such as "b-" (a solid blue line) or 'r:' (a dotted red line), etc. Both *colors* and *linestyles* work much as they do for :class:`~matplotlib.collections.LineCollection`, but only a single value (not a list or tuple) should be provided. *colors* can be a CSS4 color name, an RGB tuple, or a string hex code. *linestyles* can be the name of the style (e.g., "dashed") or a shortcut compatable with the *style* kwarg (e.g., "--"). See the documentation for the associated Matplotlib classes & functions to see all options. Note that *linestyles* and *colors* override *style*. If the styling kwargs are used, they will set the colors for all lines except last-closed boundaries. Users may control groups individually using multiple calls and plotting one group at a time. Note that *colors* and *linestyles* kwargs will override *style*; *colors* allows for more flexibility concerning color choice. Algorithm: This method, unlike its predecessor, starts by finding the last closed field lines via :func:`~spacepy.pybats.bats.Bats2d.find_earth_lastclosed`. It then fills the regions between the open and closed regions. Currently, it does not treat purely IMF field lines. ========== =========================================================== Kwarg Description ========== =========================================================== target The figure or axes to place the resulting lines. style The color coding system for field lines. Defaults to 'mag'. See :class:`spacepy.pybats.bats.Stream`. Because lines are added as a :class:`~matplotlib.collections.LineCollection`, only certain styles are allowed (i.e., line styles only, no marker styles). loc The location of the subplot on which to place the lines. DoLast Plot last-closed lines as red lines. Defaults to **True**. DoOpen Plot open field lines. Defaults to **True**. DoClosed Plot closed field lines. Defaults to **True**. nOpen Number of closed field lines to trace per hemisphere. Defaults to 5. nClosed Number of open field lines to trace per hemisphere. Defaults to 15. narrow Add "n" arrows to each line to indicate direction. Default is zero, or no arrows. arrstyle Set the arrow style in the same manner as Matplotlib's annotate function. Default is '->'. arrsize Set the size, in points, of each directional arrow. Default is 12. method The tracing method; defaults to 'rk4'. See :class:`spacepy.pybats.bats.Stream`. tol Tolerance for finding open-closed boundary; see :func:`~spacepy.pybats.bats.Bats2d.find_earth_lastclosed`. compX Name of x-variable through which to trace, defaults to 'bx'. compY Name of y-variable through which to trace, defaults to 'bz'. colors Matplotlib-compatable color name (single) to apply to lines. maxPoints Set the maximum number of points in an field line integration. Defaults to one million. linestyles A single line style indicator, defaults to '-'; see :class:`~matplotlib.collections.LineCollection` for possible options. add_body Add an planet/body to the figure. Defaults to False. ========== =========================================================== Extra kwargs are passed to Matplotlib's LineCollection class as described above. Returns ======= fig : matplotlib Figure object ax : matplotlib Axes object collect : matplotlib Collection object of trace results Examples ======== >>> import matplotlib.pyplot as plt >>> from spacepy.pybats import bats >>> # Open a 2D slice, add a pressure contour. >>> # Example file in spacepy/tests/data/pybats_test/: >>> mhd = bats.Bats2d('./y0_binary.out') >>> mhd.add_contour('x','z','p') >>> # Add field lines using default styling: >>> mhd.add_b_magsphere(target=plt.gca()) >>> # Add a subset of lines using custom styling: >>> mhd.add_b_magsphere(target=plt.gca(), DoLast=False, DoOpen=False, style='g--') ''' import re from matplotlib.collections import LineCollection from spacepy.plot import add_arrows # Set ax and fig based on given target. adj_lims = not target # If no target set, adjust axes limits. fig, ax = set_target(target, figsize=(10, 10), loc=111) if add_body: self.add_body(ax) # Lines, colors, and styles: lines = [] cols = [] # Try to get line style from "style" string. # Default to regular line if not successful. if not linestyles: lstyle = re.sub(r'\w', '', style) if not lstyle: linestyles = '-' else: linestyles = lstyle # Start by finding open/closed boundary. tilt, thetaD, thetaN, last1, last2 = self.find_earth_lastclosed( method=method, tol=tol) # Useful parameters for the following traces: R = self.attrs['rbody'] dTheta = 1.5*np.pi/180. dThetaN = .05*np.abs(thetaN[0]-thetaD[0]) dThetaS = .05*np.abs(thetaN[1]-thetaD[1]) # Do closed field lines # if DoClosed: for tDay, tNit in zip( np.linspace(0, thetaD[0]-dTheta, nClosed), np.linspace(np.pi, thetaN[1]-dTheta, nClosed)): x, y = R*np.cos(tDay), R*np.sin(tDay) sD = self.get_stream(x, y, compX, compY, method=method, maxPoints=maxPoints, style=style) x, y = R*np.cos(tNit), R*np.sin(tNit) sN = self.get_stream(x, y, compX, compY, method=method, maxPoints=maxPoints, style=style) # Append to lines, colors. lines.append(np.array([sD.x, sD.y]).transpose()) lines.append(np.array([sN.x, sN.y]).transpose()) cols.append(sD.color) cols.append(sN.color) # Do open field lines if DoOpen: for tNorth, tSouth in zip( np.linspace(thetaD[0]+dThetaN, thetaN[0]-dThetaN, nOpen), np.linspace(thetaN[1]+dThetaS, thetaD[1]-dThetaS, nOpen)): x, y = R*np.cos(tNorth), R*np.sin(tNorth) sD = self.get_stream(x, y, compX, compY, method=method, maxPoints=maxPoints, style=style) x, y = R*np.cos(tSouth), R*np.sin(tSouth) sN = self.get_stream(x, y, compX, compY, method=method, maxPoints=maxPoints, style=style) # Append to lines, colors. lines.append(np.array([sD.x, sD.y]).transpose()) lines.append(np.array([sN.x, sN.y]).transpose()) cols.append(sD.color) cols.append(sN.color) # Finalize Collection # If colors is given, replace what is given from # individual lines. Keep the list-approach, however. if colors: cols = [colors]*len(cols) # Add last-closed field lines at end so they are plotted "on top". if DoLast: lines += [np.array([last1.x, last1.y]).transpose(), np.array([last2.x, last2.y]).transpose()] cols += 2 * ['r'] # Create line collection & plot. collect = LineCollection(lines, colors=cols, linestyles=linestyles, **kwargs) ax.add_collection(collect) # Add lines if required: if narrow > 0: add_arrows(collect, n=narrow, size=arrsize, style=arrstyle) # On fresh axes, adjust limits from default ([0,1]): if adj_lims: # Set defaults: xlim, ylim = [0, 1], [0, 1] # Get x,y locations along each line: points = [path.vertices for path in collect.get_paths()] # Get max/min from each line, update lims: for p in points: xlim = min(xlim[0], p.min(0)[0]), max(xlim[1], p.max(0)[0]) ylim = min(ylim[0], p.min(0)[1]), max(ylim[1], p.max(0)[1]) # Convert to arrays for element arithmatic: xlim, ylim = np.array(xlim), np.array(ylim) # Add a buffer: dX, dY = min(5, xlim[1]-xlim[0]), min(5, ylim[1]-ylim[0]) xlim += (-dX, dX) ylim += (-dY, dY) # Set new axes limits: ax.set_xlim(xlim) ax.set_ylim(ylim) return fig, ax, collect
[docs] def add_planet(self, ax=None, rad=1.0, ang=0.0, **extra_kwargs): ''' Creates a circle of radius=self.attrs['rbody'] and returns the MatPlotLib Ellipse patch object for plotting. If an axis is specified using the "ax" keyword, the patch is added to the plot. Unlike the add_body method, the circle is colored half white (dayside) and half black (nightside) to coincide with the direction of the sun. Additionally, because the size of the planet is not intrinsically known to the MHD file, the kwarg "rad", defaulting to 1.0, sets the size of the planet. Extra keywords are handed to the Ellipse generator function. ''' from matplotlib.patches import Circle, Wedge if 'rbody' not in self.attrs: raise KeyError('rbody not found in self.attrs!') body = Circle((0, 0), rad, fc='w', zorder=1000, **extra_kwargs) arch = Wedge((0, 0), rad, 90.+ang, -90.+ang, fc='k', zorder=1001, **extra_kwargs) if ax is not None: ax.add_artist(body) ax.add_artist(arch) return body, arch
[docs] def add_body(self, ax=None, facecolor='lightgrey', DoPlanet=True, ang=0.0, **extra_kwargs): ''' Creates a circle of radius=self.attrs['rbody'] and returns the MatPlotLib Ellipse patch object for plotting. If an axis is specified using the "ax" keyword, the patch is added to the plot. Default color is light grey; extra keywords are handed to the Ellipse generator function. Because the body is rarely the size of the planet at the center of the modeling domain, add_planet is automatically called. This can be negated by using the DoPlanet kwarg. ''' from matplotlib.patches import Ellipse if 'rbody' not in self.attrs: raise KeyError('rbody not found in self.attrs!') dbody = 2.0 * self.attrs['rbody'] body = Ellipse((0, 0), dbody, dbody, facecolor=facecolor, zorder=999, **extra_kwargs) if DoPlanet: self.add_planet(ax, ang=ang) if ax is not None: ax.add_artist(body)
[docs] def add_pcolor(self, dim1, dim2, value, zlim=None, target=None, loc=111, title=None, xlabel=None, ylabel=None, ylim=None, xlim=None, add_cbar=False, clabel=None, add_body=True, dolog=False, *args, **kwargs): ''' Create a pcolor plot of variable **value** against **dim1** on the x-axis and **dim2** on the y-axis. Pcolor plots shade each computational cell with the value at the cell center. Because no interpolation or smoothing is used in the visualization, pcolor plots are excellent for examining the raw output. Simple example: >>> self.add_pcolor('x', 'y', 'rho') If kwarg **target** is None (default), a new figure is generated from scratch. If target is a matplotlib Figure object, a new axis is created to fill that figure at subplot location **loc**. If **target** is a matplotlib Axes object, the plot is placed into that axis. Four values are returned: the matplotlib Figure and Axes objects, the matplotlib contour object, and the matplotlib colorbar object (defaults to *False* if not used.) =========== ========================================================== Kwarg Description =========== ========================================================== target Set plot destination. Defaults to new figure. loc Set subplot location. Defaults to 111. title Sets title of axes. Default is no title. xlabel Sets x label of axes. Defaults to **dim1** and units. ylabel Sets y label of axes. Defaults to **dim2** and units. xlim Sets limits of x-axes. Defaults to whole domain. ylim Sets limits of y-axes. Defaults to whole domain. zlim Sets color bar range. Defaults to variable max/min. add_cbar Adds colorbar to plot. Defaults to *False*. clabel Sets colorbar label. Defaults to **var** and units. add_body Places planetary body in plot. Defaults to **True**. dolog Sets use of logarithmic scale. Defaults to **False**. =========== ========================================================== ''' import numbers import matplotlib.pyplot as plt from matplotlib.colors import LogNorm, Normalize # Set ax and fig based on given target. fig, ax = set_target(target, figsize=(10, 10), loc=loc) # Get max/min if none given. if zlim is None: zlim = [0, 0] zlim[0] = self[value].min() zlim[1] = self[value].max() if dolog and zlim[0] <= 0: zlim[0] = np.min([0.0001, zlim[1]/1000.0]) # Logarithmic scale? if dolog: z = np.where(self[value] > zlim[0], self[value], 1.01*zlim[0]) norm = LogNorm(vmin=zlim[0], vmax=zlim[1]) else: z = self[value] norm = Normalize(vmin=zlim[0], vmax=zlim[1]) if self['grid'].attrs['gtype'] == 'Regular': pass else: # Indices corresponding to QTree dimensions: ix = self['grid'].attrs['dims'].index(dim1) iy = self['grid'].attrs['dims'].index(dim2) for k in self.qtree: # Plot only leafs of the tree. if not self.qtree[k].isLeaf: continue leaf = self.qtree[k] x = leaf.cells[ix] y = leaf.cells[iy] z_local = z[leaf.locs] pcol = ax.pcolormesh(x, y, z_local, norm=norm, **kwargs) # Add cbar if necessary. if add_cbar: cbar = plt.colorbar(pcol, ax=ax, pad=0.01) if clabel is None: if 'units' in self[value].attrs: clabel = f"{value}, ({self[value].attrs['units']})" else: clabel = f"{value}" cbar.set_label(clabel) else: cbar = None # Need to return something, even if none. # Set title, labels, axis ranges (use defaults where applicable.) if title: ax.set_title(title) if ylabel is None: ylabel = '%s ($R_{E}$)' % dim2.upper() if xlabel is None: xlabel = '%s ($R_{E}$)' % dim1.upper() ax.set_ylabel(ylabel) ax.set_xlabel(xlabel) try: assert len(xlim) == 2 assert isinstance(xlim[0], numbers.Number) assert isinstance(xlim[1], numbers.Number) except (TypeError, AssertionError): if xlim is not None: raise ValueError('add_pcolor: xlim must be list- ' + 'or array-like and have 2 elements') else: ax.set_xlim(xlim) try: assert len(ylim) == 2 assert isinstance(ylim[0], numbers.Number) assert isinstance(ylim[1], numbers.Number) except (TypeError, AssertionError): if ylim is not None: raise ValueError('add_pcolor: ylim must be list- ' + 'or array-like and have 2 elements') else: ax.set_ylim(ylim) # Add body/planet. Determine where the sun is first. if dim1 == 'x': ang = 0.0 elif dim2 == 'x': ang = 90.0 else: ang = 0.0 if add_body and 'rbody' in self.attrs: self.add_body(ax, ang=ang) return fig, ax, pcol, cbar
[docs] def add_contour(self, dim1, dim2, value, nlev=30, target=None, loc=111, title=None, xlabel=None, ylabel=None, ylim=None, xlim=None, add_cbar=False, clabel=None, filled=True, add_body=True, dolog=False, zlim=None, *args, **kwargs): ''' Create a contour plot of variable **value** against **dim1** on the x-axis and **dim2** on the y-axis. Simple example: >>> self.add_contour('x', 'y', 'rho') If kwarg **target** is None (default), a new figure is generated from scratch. If target is a matplotlib Figure object, a new axis is created to fill that figure at subplot location **loc**. If **target** is a matplotlib Axes object, the plot is placed into that axis. Four values are returned: the matplotlib Figure and Axes objects, the matplotlib contour object, and the matplotlib colorbar object (defaults to *False* if not used.) =========== ========================================================== Kwarg Description =========== ========================================================== target Set plot destination. Defaults to new figure. loc Set subplot location. Defaults to 111. nlev Number of contour levels. Defaults to 30. title Sets title of axes. Default is no title. xlabel Sets x label of axes. Defaults to **dim1** and units. ylabel Sets y label of axes. Defaults to **dim2** and units. xlim Sets limits of x-axes. Defaults to whole domain. ylim Sets limits of y-axes. Defaults to whole domain. zlim Sets contour range. Defaults to variable max/min. add_cbar Adds colorbar to plot. Defaults to *False*. clabel Sets colorbar label. Defaults to **var** and units. add_body Places planetary body in plot. Defaults to **True**. dolog Sets use of logarithmic scale. Defaults to **False**. =========== ========================================================== ''' import numbers import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from matplotlib.ticker import LogLocator, LogFormatterMathtext # Set ax and fig based on given target. fig, ax = set_target(target, figsize=(10, 10), loc=loc) # Get max/min if none given. if zlim is None: zlim = [0, 0] zlim[0] = self[value].min() zlim[1] = self[value].max() if dolog and zlim[0] <= 0: zlim[0] = np.min([0.0001, zlim[1]/1000.0]) # Set contour command based on grid type. if self['grid'].attrs['gtype'] != 'Regular': # Non-uniform grids. if filled: contour = ax.tricontourf else: contour = ax.tricontour else: # Uniform grids. if filled: contour = ax.contourf else: contour = ax.contour # Create levels and set norm based on dolog. if dolog: levs = np.power(10, np.linspace(np.log10(zlim[0]), np.log10(zlim[1]), nlev)) z = np.where(self[value] > zlim[0], self[value], 1.01*zlim[0]) norm = LogNorm() ticks = LogLocator() fmt = LogFormatterMathtext() else: levs = np.linspace(zlim[0], zlim[1], nlev) z = self[value] norm = None ticks = None fmt = None # Plot contour. cont = contour(self[dim1], self[dim2], np.array(z), levs, *args, norm=norm, **kwargs) # Add cbar if necessary. if add_cbar: cbar = plt.colorbar(cont, ax=ax, ticks=ticks, format=fmt, pad=0.01) if clabel is None: if 'units' in self[value].attrs: clabel = f"{value}, ({self[value].attrs['units']})" else: clabel = f"{value}" cbar.set_label(clabel) else: cbar = None # Need to return something, even if none. # Set title, labels, axis ranges (use defaults where applicable.) if title: ax.set_title(title) if ylabel is None: ylabel = '%s ($R_{E}$)' % dim2.upper() if xlabel is None: xlabel = '%s ($R_{E}$)' % dim1.upper() ax.set_ylabel(ylabel) ax.set_xlabel(xlabel) try: assert len(xlim) == 2 assert isinstance(xlim[0], numbers.Number) assert isinstance(xlim[1], numbers.Number) except (TypeError, AssertionError): if xlim is not None: raise ValueError('add_contour: xlim must be list- ' + 'or array-like and have 2 elements') else: ax.set_xlim(xlim) try: assert len(ylim) == 2 assert isinstance(ylim[0], numbers.Number) assert isinstance(ylim[1], numbers.Number) except (TypeError, AssertionError): if ylim is not None: raise ValueError('add_contour: ylim must be list- or ' + 'array-like and have 2 elements') else: ax.set_ylim(ylim) # Add body/planet. Determine where the sun is first. if dim1 == 'x': ang = 0.0 elif dim2 == 'x': ang = 90.0 else: ang = 0.0 if add_body and 'rbody' in self.attrs: self.add_body(ax, ang=ang) return fig, ax, cont, cbar
[docs] class ShellSlice(IdlFile): ''' Shell slices are special MHD outputs where the domain is interpolated onto a spherical slice in 1, 2, or 3 dimensions. Some examples include radial or azimuthal lines, spherical shells, or 3D wedges. The *Shell* class reads and handles these output types. '''
[docs] def __init__(self, filename, format='binary', *args, **kwargs): from spacepy.pybats import parse_filename_time IdlFile.__init__(self, filename, format=format, keep_case=False) # Extract time from file name: i_iter, runtime, time = parse_filename_time(self.attrs['file']) if 'time' not in self.attrs: self.attrs['time'] = time if 'iter' not in self.attrs: self.attrs['iter'] = i_iter # Create some helper variables for plotting and calculations d2r = np.pi/180. # Convert degrees to radians. # Get grid spacing. If npoints ==1, set to 1 to avoid math errors. self.drad = (self['r'][-1] - self['r'][0])/max(self['grid'][0]-1, 1) self.dlon = (self['lon'][-1]-self['lon'][0])/max(self['grid'][1]-1, 1) self.dlat = (self['lat'][-1]-self['lat'][0])/max(self['grid'][2]-1, 1) self.dphi = d2r*self.dlon self.dtheta = d2r*self.dlat # Get spherical, uniform grid in units of r_body/radians: self.lon, self.r, self.lat = np.meshgrid( np.array(self['lon']), np.array(self['r']), np.array(self['lat'])) self.phi = d2r*self.lon self.theta = d2r*(90-self.lat)
[docs] @calc_wrapper def calc_urad(self): ''' Calculate radial velocity. ''' ur = self['ux']*np.sin(self.theta)*np.cos(self.phi) + \ self['uy']*np.sin(self.theta)*np.sin(self.phi) + \ self['uz']*np.cos(self.theta) self['ur'] = dmarray(ur, {'units': self['ux'].attrs['units']})
[docs] @calc_wrapper def calc_radflux(self, var, conv=1000. * (100.0)**3): ''' For variable *var*, calculate the radial flux of *var* through each grid point in the slice as self[var]*self['ur']. Resulting value stored as "var_rflx". ''' if var+'_rflx' in self: return # Make sure we have radial velocity. if 'ur' not in self: self.calc_urad() # Calc flux: self[var+'_rflx'] = self[var] * self['ur'] * conv
[docs] @calc_wrapper def calc_radflu(self, var): ''' For variable *var*, calculate the radial fluence, or the spatially integrated radial flux through 2D surfaces of constant radius. Resulting variable stored as "var_rflu". Result will be an array with one value for each radial distance within the object. ''' # Need at least 2D in angle space: if self.dphi == 0 or self.dtheta == 0: raise ValueError('Fluence can be calculated for >=2D surfaces.') # Trim flux off of val name: if '_rflx' in var: var = var[:-5] # Convenience: flux = var + '_rflx' flu = var + '_rflu' # Make sure flux exists: if flux not in self: self.calc_radflux(var) if flu in self: return # Create output container, one point per radial distance: self[flu] = np.zeros(self['grid'][0]) # Integrate over all radii. # Units: convert R to km and cm-3 to km. for i, R in enumerate(self['r']): self[flu] = np.sum( (R * 6371.0)**2 * self[flux][i, :, :] * np.sin(self.theta[i, :, :]) * self.dtheta * self.dphi * 1000.**2)
[docs] def add_cont_shell(self, value, irad=0, target=None, loc=111, zlim=None, dolabel=True, add_cbar=False, dofill=True, nlev=51, colat_max=90, rotate=np.pi/2, dolog=False, clabel=None, latticks=15., yticksize=14, extend='both', **kwargs): ''' For slices that cover a full hemisphere or more, create a polar plot of variable *value*. Extra keywords are sent to the matplotlib contour command. ''' import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from matplotlib.ticker import (LogLocator, LogFormatterMathtext, MultipleLocator) fig, ax = set_target(target, figsize=(10, 10), loc=loc, polar=True) # Get max/min if none given. if zlim is None: zlim = [0, 0] zlim[0] = self[value][irad, :, :].min() zlim[1] = self[value][irad, :, :].max() # For log space, no negative zlimits. if dolog and zlim[0] <= 0: zlim[0] = np.min([0.0001, zlim[1]/1000.0]) # Create levels and set norm based on dolog. if dolog: # Log space! levs = np.power(10, np.linspace(np.log10(zlim[0]), np.log10(zlim[1]), nlev)) norm = LogNorm() ticks = LogLocator() fmt = LogFormatterMathtext() else: levs = np.linspace(zlim[0], zlim[1], nlev) norm = None ticks = None fmt = None # Select proper contour function based on fill/don't fill. if dofill: func = ax.contourf else: func = ax.contour # Plot result. Rotate "rotate" radians to get sun in right spot. # Plot against colatitude to arrange results correctly. cnt = func(self.phi[irad, :, :]+rotate, 90-self.lat[irad, :, :], np.array(self[value][irad, :, :]), levs, norm=norm, extend=extend, **kwargs) # Add cbar if necessary. if add_cbar: cbar = plt.colorbar(cnt, ax=ax, ticks=ticks, format=fmt, shrink=.85) if clabel is None: if 'units' in self[value].attrs: clabel = f"{value}, ({self[value].attrs['units']})" else: clabel = f"{value}" cbar.set_label(clabel) else: cbar = None # Need to return something, even if none. # Adjust latitude ax.set_ylim([0, colat_max]) # Adjust atitude and add better labels: ax.yaxis.set_major_locator(MultipleLocator(latticks)) ax.set_ylim([0, colat_max]) ax.set_yticklabels('') opts = {'size': yticksize, 'rotation': -45, 'ha': 'center', 'va': 'center'} for theta in np.arange(90-latticks, 90-colat_max, -latticks): txt = '{:02.0f}'.format(theta)+r'$^{\circ}$' ax.text(np.pi/4., 90.-theta, txt, color='w', weight='extra bold', **opts) ax.text(np.pi/4., 90.-theta, txt, color='k', weight='light', **opts) # Use MLT-type labels. lt_labels = ['Noon', '18', '00', '06'] xticks = [0, np.pi/2, np.pi, 3*np.pi/2] xticks = np.array(xticks) + rotate # Apply x-labels: ax.set_xticks(xticks) ax.set_xticklabels(lt_labels) return fig, ax, cnt, cbar
[docs] class Mag(PbData): ''' A container for data from a single BATS-R-US virtual magnetometer. These work just like a typical :class:`spacepy.pybats.PbData` object. Beyond raw magnetometer data, additional values are calculated and stored, including total pertubations (the sum of all global and ionospheric pertubations as measured by the magnetometer). Users will be interested in methods :meth:`~spacepy.pybats.bats.Mag.add_comp_plot` and :meth:`~spacepy.pybats.bats.Mag.calc_dbdt`. Instantiation is best done through :class:`spacepy.pybats.bats.MagFile` objects, which load and parse organize many virtual magnetometers from a single output file into a single object. However, they can be created manually, though painfully. Users must instantiate by handing the new object the number of lines that will be parsed (rather, the number of data points that will be needed), a time vector, and (optionally) the list of variables coming from the GM and IE module. While the latter two are keyword arguments, at least one should be provided. Next, the arrays whose keys were given by the *gmvars* and *ievars* keyword arguments in the instantiation step can either be filled manually or by using the :meth:`~spacepy.pybats.bats.Mag.parse_gmline` and :meth:`~spacepy.pybats.bats.Mag.parse_ieline` methods to parse lines of ascii data from a magnetometer output file. Finally, the ``spacepy.pybats.bats.Mag.recalc()`` method should be called to calculate total perturbation. '''
[docs] def __init__(self, nlines, time, gmvars=(), ievars=(), *args, **kwargs): super(Mag, self).__init__(*args, **kwargs) # Init as PbData. self['time'] = time self.attrs['nlines'] = nlines self['x'] = np.zeros(nlines) self['y'] = np.zeros(nlines) self['z'] = np.zeros(nlines) # Create IE and GM specific containers. for key in gmvars: self[key] = np.zeros(nlines) for key in ievars: self['ie_'+key] = np.zeros(nlines)
[docs] def parse_gmline(self, i, line, namevar): ''' Parse a single line from a GM_mag*.out file and put into the proper place in the magnetometer arrays. The line should have the same number of variables as was initially given to the :class:`~spacepy.pybats.bats.Mag` object. This method is best used through the :class:`~spacepy.pybats.bats.MagFile` class interface. Usage: >>> self.parse_gmline(i, line, namevar) where i is the entry number, line is the raw ascii line, and namevar is the list of variable names. ''' parts = line.split() self['x'][i] = float(parts[9]) self['y'][i] = float(parts[10]) self['z'][i] = float(parts[11]) for j, key in enumerate(namevar): self[key][i] = float(parts[j+12])
[docs] def parse_ieline(self, i, line, namevar): ''' Parse a single line from a IE_mag*.out file and put into the proper place in the magnetometer arrays. The line should have the same number of variables as was initially given to the :class:`~spacepy.pybats.bats.Mag` object. This method is best used through the :class:`~spacepy.pybats.bats.MagFile` class interface. Usage: >>> self.parse_gmline(i, line, namevar) where i is the entry number, line is the raw ascii line, and namevar is the list of variable names. ''' parts = line.split() for j, key in enumerate(namevar): self['ie_'+key][i] = float(parts[j+11])
def _recalc(self): ''' Calculate total :math:`\\Delta B` from GM and IE; store under object keys *totaln*, *totale*, and *totald* (one for each component of the HEZ coordinate system). This function should only be called to correct legacy versions of magnetometer files. ''' # If values already exist, do not overwrite. if 'dBn' in self: return # New containers: self['totaln'] = np.zeros(self.attrs['nlines']) self['totale'] = np.zeros(self.attrs['nlines']) self['totald'] = np.zeros(self.attrs['nlines']) for key in list(self.keys()): if key[-2:] == 'Bn': self['totaln'] = self['totaln']+self[key] if key[-2:] == 'Be': self['totale'] = self['totale']+self[key] if key[-2:] == 'Bd': self['totald'] = self['totald']+self[key] # Old names -> new names: varmap = {'totaln': 'dBn', 'totale': 'dBe', 'totald': 'dBd', 'gm_dBn': 'dBnMhd', 'gm_dBe': 'dBeMhd', 'gm_dBd': 'dBdMhd', 'gm_facdBn': 'dBnFac', 'gm_facdBe': 'dBeFac', 'gm_facdBd': 'dBdFac', 'ie_JhdBn': 'dBnHal', 'ie_JhdBe': 'dBeHal', 'ie_JhdBd': 'dBdHal', 'ie_JpBn': 'dBnPed', 'ie_JpBe': 'dBePed', 'ie_JpBd': 'dBdPed'} # Replace variable names. for key in list(self.keys()): if key in varmap: self[varmap[key]] = self.pop(key)
[docs] def calc_h(self): ''' Calculate the total horizontal perturbation, 'H', using the pythagorean sum of the two horizontal components (north-south and east-west components): $\\Delta B_H = \\sqrt{\\Delta B_N^2 + \\Delta B_E^2}$ ''' allvars = list(self.keys()) for v in allvars: # Find all dB-north variables: if v[:3] == 'dBn': v_east = v.replace('dBn', 'dBe') self[v.replace('dBn', 'dBh')] = dmarray( np.sqrt(self[v]**2+self[v_east]**2), {'units': 'nT'})
[docs] def calc_dbdt(self): ''' Calculate the time derivative of all dB-like variables and save as dBdt[direction][component]. For example, the time derivative of dBeMhd will be saved as dBdteMhd. $|dB/dt|_h$ is also calculated following the convention of Pulkkinen et al, 2013: $|dB/dt|_H = \\sqrt{(\\dB_N/dt)^2 + (dB_E/dt)^2}$ A 2nd-order accurate centeral difference method is used to calculate the time derivative. For the first and last points, 2nd-order accurate forward and backward differences are taken, respectively. ''' # Do not calculate twice. if 'dBdtn' in self: return # Get dt values: dt = np.array([x.total_seconds() for x in np.diff(self['time'])]) # Loop through variables: oldvars = list(self.keys()) for k in oldvars: if 'dB' not in k: continue # Create new variable name and container: new = k.replace('dB', 'dBdt') self[new] = dmarray(np.zeros(self.attrs['nlines']), {'units': 'nT/s'}) # Central diff: self[new][1:-1] = (self[k][2:]-self[k][:-2])/(dt[1:]+dt[:-1]) # Forward diff: self[new][0] = (-self[k][2] + 4*self[k][1] - 3*self[k][0]) \ / (dt[1]+dt[0]) # Backward diff: self[new][-1] = (3*self[k][-1] - 4*self[k][-2] + self[k][-3]) \ / (dt[-1]+dt[-2]) self['dBdth'] = np.sqrt(self['dBdtn']**2+self['dBdte']**2)
[docs] def add_plot(self, value, style='-', target=None, loc=111, label=None, **kwargs): ''' Plot **value**, which should be a key corresponding to a data vector stored in the :class:`~spacepy.pybats.bats.Mag` object, against the object's *time*. The **target** kwarg specifies the destination of the plot. If not set, **target** defaults to None and a new figure and axis will be created. If target is a matplotlib figure, a new axis is created at subplot location 111 (which can be changed using kwarg **loc**). If target is a matplotlib Axes object, the line is added to the plot as if ``Axes.plot()`` was used. The line label, which is used for setting labels on figure legends, defaults to the value key but can be customized with the "label" kwarg. The **style** keyword accepts basic Matplotlib line style strings such as '--r' or '+g'. This string will be passed on to the plot command to customize the line. All extra kwargs are handed to ``Axes.plot``, allowing the user to set any additional options (e.g., line color and style, etc.). Three values are returned: the Figure object, Axis object, and newly created line object. These can be used to further customize the figure, axis, and line as necessary. Example: Plot total :math:`\\Delta B_N` onto an existing axis with line color blue, line style dashed, and line label "Wow!": >>> self.plot('dBn', target='ax', label='Wow!', lc='b', ls='--') Example: Plot total :math:`\\Delta B_N` on a new figure, save returned values and overplot additional values on the returned axis. Default labels and line styles are used in this example. >>> fig, ax, line = self.plot('n') >>> self.plot('dBe', target = ax) ''' if not label: label = value # Set figure and axes based on target: fig, ax = set_target(target, figsize=(10, 4), loc=loc) ax.plot(self['time'], self[value], style, label=label, **kwargs) applySmartTimeTicks(ax, self['time'], dolabel=True) return fig, ax
[docs] def add_comp_plot(self, direc, target=None, add_legend=True, loc=111, lw=2.0): ''' Create a plot with, or add to an existing plot, an illustration of how the separate components sum together to make the total disturbance in a given orthongal direction (arg **direc**). The three possible components are 'n' (northwards, towards the magnetic pole), 'e' (eastwards), or 'd' (downwards towards the center of the Earth.) The components of the total disturbance in any on direction are magnetospheric currents ('gm_dB'), gap-region field-aligned currents ('gm_facdB'), and ionospheric Hall and Pederson currents ('ie_Jp' and 'ie_Jh'). Example usage: >>> self.add_comp_plot('n') This will create a new plot with the total disturbance in the 'n' direction along with line plots of each component that builds this total. This method uses the familiar PyBats **target** kwarg system to allow users to add these plots to existing figures or axes. Parameters ========== direc : string Indicate the direction to plot: either 'n', 'e', 'd', or 'h' if calculated. Other Parameters ================ target : Matplotlib Figure or Axes object Set plot destination. Defaults to new figure. loc : 3-digit integer Set subplot location. Defaults to 111. add_legend : bool Add legend to plot. Defaults to True. lw : float Set the width of the lines. Defaults to 2.0 Total field is always 1.5 times thicker. ''' # Set plot targets. fig, ax = set_target(target, figsize=(10, 4), loc=loc) prefix = 'dB'+direc # Use a dictionary to assign line styles, widths. styles = {prefix+'Mhd': '--', prefix+'Fac': '--', prefix+'Hal': '-.', prefix+'Ped': '-.', prefix: '-'} widths = {prefix+'Mhd': lw, prefix+'Fac': lw, prefix+'Hal': lw, prefix+'Ped': lw, prefix: 1.5*lw} colors = {prefix+'Mhd': '#FF6600', prefix+'Fac': 'r', prefix+'Hal': 'b', prefix+'Ped': 'c', prefix: 'k'} # Labels: labels = {prefix+'Mhd': r'$J_{Mag}$', prefix+'Fac': r'$J_{Gap}$', prefix+'Hal': r'$J_{Hall}$', prefix+'Ped': r'$J_{Peder}$', prefix: r'Total $\Delta B'+'_{}$'.format(direc)} # Plot. for k in sorted(self): if ('dB'+direc not in k) or (k == 'time') or (k[:4] == 'dBdt'): continue ax.plot(self['time'], self[k], label=labels[k], lw=widths[k], c=colors[k]) # ,ls=styles[k] # Ticks, zero-line, and legend: applySmartTimeTicks(ax, self['time'], True, True) ax.hlines(0.0, self['time'][0], self['time'][-1], linestyles=':', lw=2.0, colors='k') if add_legend: ax.legend(ncol=3, loc='best') # Axis labels: ax.set_ylabel(r'$\Delta B_{%s}$ ($nT$)' % (direc.upper())) if target is None: fig.tight_layout() return fig, ax
[docs] class MagFile(PbData): ''' BATS-R-US magnetometer files are powerful tools for both research and operations. :class:`~spacepy.pybats.bats.MagFile` objects open, parse, and visualize such output. The $\\delta B$ calculated by the SWMF requires two components: GM (BATSRUS) and IE (Ridley_serial). The data is spread across two files: GM_mag*.dat and IE_mag*.dat. The former contains $\\delta B$ caused by gap-region (i.e., inside the inner boundary) FACs and the changing global field. The latter contains the $\\delta B$ caused by Pederson and Hall currents in the ionosphere. :class:`~spacepy.pybats.bats.MagFile` objects can open one or both of these files at a time; when both are opened, the total $\\delta B$ is calculated and made available to the user. Usage: >>> # Open up the GM magnetometer file only. >>> obj = spacepy.pybats.bats.MagFile('GM_file.mag') >>> >>> # Open up both the GM and IE file [LEGACY SWMF ONLY] >>> obj = spacepy.pybats.bats.MagFile('GM_file.mag', 'IE_file.mag') >>> >>> # Open up the GM magnetometer file; search for the IE file. >>> obj = spacepy.pybats.bats.MagFile('GM_file.mag', find_ie=True) Note that the **find_ie** kwarg uses a simple search assuming the data remain in a typical SWMF-output organizational tree (i.e., if the results of a simulation are in folder *results*, the GM magnetometer file can be found in *results/GM/* or *results/GM/IO2/* while the IE file can be found in *results/IE/* or *results/IE/ionosphere/*). It will also search the present working directory. This method is not robust; the user must take care to ensure that the two files correspond to each other. '''
[docs] def __init__(self, filename, ie_name=None, find_ie=False, *args, **kwargs): from glob import glob super(MagFile, self).__init__(*args, **kwargs) # Init as PbData. self.attrs['gmfile'] = filename # Try to find the IE file based on our current location. if find_ie and not ie_name: basedir = filename[0:filename.rfind('/')+1] if glob(basedir + '../IE/IE_mag_*.mag'): self.attrs['iefile'] = glob(basedir + '../IE/IE_mag_*.mag')[-1] elif glob(basedir + '../../IE/ionosphere/IE_mag_*.mag'): self.attrs['iefile'] = \ glob(basedir + '../../IE/ionosphere/IE_mag_*.mag')[-1] elif glob(basedir + '/IE_mag_*.mag'): self.attrs['iefile'] = glob(basedir + '/IE_mag_*.mag')[-1] else: self.attrs['iefile'] = None else: self.attrs['iefile'] = ie_name # Set legacy mode to handle old variable names: self.legacy = find_ie or bool(ie_name) self.readfiles()
[docs] def readfiles(self): ''' Read and parse GM file and IE file (if name given.) ''' import datetime as dt # Slurp lines. infile = open(self.attrs['gmfile'], 'r') lines = infile.readlines() infile.close() # Parse header: # Get number of stations. nmags = int((lines[0].split(':')[0]).split()[0]) # Get station names. names = lines[0].split(':')[1] namemag = names.split() self.attrs['namemag'] = namemag # Check nmags vs number of mags in header. if nmags != len(namemag): raise BaseException( 'ERROR: GM file claims %i magnetomers, lists %i' % (nmags, len(namemag))) # Grab variable names. Use legacy mode if necessary: prefix = 'gm_' * self.legacy # skip time, iter, and loc; add prefix to var names: gm_namevar = [prefix + x for x in lines[1].split()[12:]] # Set number of mags and records. self.attrs['nmag'] = len(namemag) nrecords = (len(lines)-2)//nmags # If there is an IE file, Parse that header, too. if self.attrs['iefile']: infile = open(self.attrs['iefile'], 'r') ielns = infile.readlines() infile.close() nmags = int((ielns[0].split(':')[0]).split()[0]) iestats = (ielns[0].split(':')[1]).split() # Check nmags vs number of mags in header. if nmags != len(iestats): raise BaseException( 'ERROR: IE file claims %i magnetomers, lists %i' % (nmags, len(namemag))) if iestats != self.attrs['namemag']: raise RuntimeError("Files do not have matching stations.") ie_namevar = ielns[1].split()[11:] self.attrs['ie_namevar'] = ie_namevar if (len(ielns)/self.attrs['nmag']) != (nrecords-1): print('Number of lines do not match: GM=%d, IE=%d!' % (nrecords-1, len(ielns)/self.attrs['nmag'])) nrecords = min(ielns, nrecords-1) else: ie_namevar = () self.attrs['ie_namevar'] = () # Build containers. self['time'] = np.zeros(nrecords, dtype=object) self['iter'] = np.zeros(nrecords, dtype=float) for name in namemag: self[name] = Mag(nrecords, self['time'], gm_namevar, ie_namevar) data_buffer = np.zeros((nrecords, nmags, (len(gm_namevar)+3))) # Read file data. for i in range(nrecords): line = lines[i*nmags+2] parts = line.split() self['iter'][i] = parts[0] self['time'][i] = dt.datetime( int(parts[1]), # year int(parts[2]), # month int(parts[3]), # day int(parts[4]), # hour int(parts[5]), # minute int(parts[6]), # second int(parts[7])*1000 # microsec ) for j in range(nmags): line = lines[i*nmags+j+2] if j > 0: parts = line.split() values = [float(part) for part in parts[9:]] data_buffer[i, j] = values if self.attrs['iefile'] and i > 0: line = ielns[i*nmags+2] self[namemag[0]].parse_ieline(i, line, ie_namevar) for j in range(1, nmags): self[namemag[j]].parse_ieline(i, ielns[i*nmags+j+2], ie_namevar) for j in range(nmags): mag = self[namemag[j]] mag['x'] = data_buffer[:, j, 0] mag['y'] = data_buffer[:, j, 1] mag['z'] = data_buffer[:, j, 2] for k, key in enumerate(gm_namevar): mag[key] = data_buffer[:, j, k+3] # Sum up IE/GM components if necessary (legacy only): if self.legacy: self._recalc() # Get time res. self.attrs['dt'] = (self['time'][1] - self['time'][0]).seconds / 60.0
def _recalc(self): ''' Old magnetometer files had different variable names and did not contain the total perturbation. This function updates variable names and sums all contributions from all models/regions to get total :math:`\\Delta B`. This function is only required for legacy results. New versions of the SWMF include both GM, IE, and total perturbations in a single file. ''' for mag in self.attrs['namemag']: self[mag]._recalc()
[docs] def calc_h(self): ''' For each magnetometer object, calculate the horizontal component of the perturbations using the pythagorean sum of the two horizontal components (north-south and east-west components): $\\Delta B_H = \\sqrt{\\Delta B_N^2 + \\Delta B_E^2}$ ''' for k in self: if k == 'time' or k == 'iter': continue self[k].calc_h()
[docs] def calc_dbdt(self): ''' For each magnetometer object, calculate the horizontal component of the perturbations. $|dB/dt|_h$ is also calculated following the convention of Pulkkinen et al, 2013: $|dB/dt|_H = \\sqrt{(\\dB_N/dt)^2 + (dB_E/dt)^2}$ ''' for k in self: if k == 'time' or k == 'iter': continue self[k].calc_dbdt()
[docs] class MagGridFile(IdlFile): ''' Magnetometer grids are a recent addition to BATS-R-US: instead of specifying a small set of individual stations, the user can specify a grid of many stations spanning a latitude/longitude range. The files are output in the usual :class:`spacepy.pybats.IdlFile` format. This class handles the reading, manipulating, and visualization of these files. '''
[docs] def __init__(self, *args, **kwargs): import re from spacepy.pybats import parse_filename_time # Initialize as an IdlFile. super(MagGridFile, self).__init__(header=None, *args, **kwargs) # Additional header parsing: head = self.attrs['header'] match = re.search(r'\((\w+)\).*\[(\w+)\].*\[(\w+)\]', head) coord, unit1, unit2 = match.groups() self['grid'].attrs['coord'] = coord # Extract time from file name: i_iter, runtime, time = parse_filename_time(self.attrs['file']) if 'time' not in self.attrs: self.attrs['time'] = time if 'iter' not in self.attrs: self.attrs['iter'] = i_iter # Set units based on header parsing: for v in self: if v == 'grid': continue elif v in self['grid'].attrs['dims']: self[v].attrs['units'] = unit1 else: self[v].attrs['units'] = unit2
[docs] @calc_wrapper def calc_h(self): ''' Calculate the total horizontal perturbation, 'h', using the pythagorean sum of the two horizontal components (east and west components). ''' allvars = list(self.keys()) for v in allvars: # Find all dB-north variables: if v[:3] == 'dBn': v_east = v.replace('dBn', 'dBe') self[v.replace('dBn', 'dBh')] = dmarray( np.sqrt(self[v]**2 + self[v_east]**2), {'units': 'nT'})
[docs] def add_contour(self, value, nlev=30, target=None, loc=111, title=None, xlabel=None, ylabel=None, ylim=None, xlim=None, add_cbar=False, clabel=None, filled=True, dolog=False, zlim=None, coords=None, add_conts=False, *args, **kwargs): ''' Add a lat-lon contour plot of variable *value*. ''' from spacepy.pybats import mhdname_to_tex import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from matplotlib.ticker import (LogLocator, FuncFormatter, LogFormatterMathtext, MultipleLocator) # Set ax and fig based on given target. fig, ax = set_target(target, figsize=(10, 7), loc=loc) # Get max/min if none given. if zlim is None: zlim = [self[value].min(), self[value].max()] if zlim[1]-zlim[0] > np.max(zlim): maxval = max(abs(zlim[0]), abs(zlim[1])) zlim = [-maxval, maxval] # No zero-level for log scales: if dolog and zlim[0] <= 0: zlim[0] = np.min([0.0001, zlim[1]/1000.0]) # Better default color maps: if 'cmap' not in kwargs: # If zlim spans positive and negative: if zlim[1]-zlim[0] > np.max(zlim): kwargs['cmap'] = 'bwr' else: kwargs['cmap'] = 'Reds' # Set contour command based on filled/unfilled contours: if filled: contour = ax.contourf else: contour = ax.contour # Create levels and set norm based on dolog. if dolog: levs = np.power(10, np.linspace(np.log10(zlim[0]), np.log10(zlim[1]), nlev)) z = np.where(self[value] > zlim[0], self[value], 1.01*zlim[0]) norm = LogNorm() ticks = LogLocator() fmt = LogFormatterMathtext() else: levs = np.linspace(zlim[0], zlim[1], nlev) z = self[value] norm = None ticks = MultipleLocator((zlim[1]-zlim[0])/10) # fix this fmt = None # Add Contour to plot: cont = contour(self['Lon'], self['Lat'], np.array(np.transpose(z)), levs, *args, norm=norm, **kwargs) # Add cbar if necessary. if add_cbar: cbar = plt.colorbar(cont, ax=ax, ticks=ticks, format=fmt, pad=0.01) if clabel is None: varname = mhdname_to_tex(value) if 'units' in self[value].attrs: units = mhdname_to_tex(self[value].attrs['units']) else: units = 'unitless' clabel = f"{varname} ({units})" cbar.set_label(clabel) else: cbar = None # Need to return something, even if none. # Set title, labels, axis ranges (use defaults where applicable.) if title: ax.set_title(title) coord_sys = self['grid'].attrs['coord'] if ylabel is None: ylabel = 'Latitude ({})'.format(coord_sys) if xlabel is None: xlabel = 'Longitude ({})'.format(coord_sys) ax.set_ylabel(ylabel) ax.set_xlabel(xlabel) if type(xlim) is not None: ax.set_xlim(xlim) if type(ylim) is not None: ax.set_ylim(ylim) # If a brand-new axes was created, use custom ticks: if not issubclass(type(target), plt.Axes): fmttr = FuncFormatter(lambda x, pos: '{:4.1f}'.format(x)+r'$^{\circ}$') ax.xaxis.set_major_formatter(fmttr) ax.yaxis.set_major_formatter(fmttr) # If a brand-new figure was created, use tight-layout. if target is None: fig.tight_layout() return fig, ax, cont, cbar
[docs] def interp(self, var, lons, lats): ''' Interpolate variable *var* to point(s) *lats*, *lons*. *lats* and *lons* can either be scalar or a numpy-like array. Values interpolated to these positions is returned to the caller either as a scalar or array. Simple bilinear interpolation is used. ''' from spacepy.pybats.batsmath import interp_2d_reg as intp return intp(lats, lons, self['Lat'], self['Lon'], self[var])
[docs] class GeoIndexFile(LogFile): ''' Geomagnetic Index files are a specialized BATS-R-US output that contain geomagnetic indices calculated from simulated ground-based magnetometers. Currently, the only index instituted is Kp through the faKe_p setup. Future work will expand the system to include Dst, AE, etc. GeoIndFiles are a specialized subclass of pybats.LogFile. It includes additional methods to quickly visualize the output, perform data-model comparisons, and more. ''' def __repr__(self): return 'GeoIndexFile object at %s' % (self.attrs['file'])
[docs] def __init__(self, filename, keep_case=True, *args, **kwargs): ''' Load ascii file located at self.attrs['file']. ''' # Call super __init__: super(GeoIndexFile, self).__init__(filename, *args, **kwargs) # Re-parse the file header; look for key info. head = (self.attrs['descrip']).replace('=', ' ') parts = head.split() if 'DtOutput=' in head: self.attrs['dt'] = float(parts[parts.index('DtOutput=') + 1]) if 'SizeKpWindow' in head: self.attrs['window'] = float(parts[parts.index( 'SizeKpWindow(Mins)')+1]) if 'Lat' in head: self.attrs['lat'] = float(parts[parts.index('Lat') + 1]) if 'K9' in head: self.attrs['k9'] = float(parts[parts.index('K9') + 1])
[docs] def fetch_obs_kp(self): ''' Fetch the observed Kp index for the time period covered in the logfile. Return *True* on success. Observed Kp is automatically fetched from the Kyoto World Data Center via the :mod:`spacepy.pybats.kyoto` module. The associated :class:`spacepy.pybats.kyoto.KyotoKp` object, which holds the observed kp, is stored as *self.obs_kp* for future use. ''' import spacepy.pybats.kyoto as kt # Return if already obtained: if hasattr(self, 'obs_kp'): return True # Start and end time to collect observations: stime = self['time'][0] etime = self['time'][-1] # Attempt to fetch from Kyoto website: try: self.obs_kp = kt.fetch('kp', stime, etime) # Warn on failure: except BaseException as args: raise Warning('Failed to fetch Kyoto Kp: ', args) return False return True
[docs] def fetch_obs_ae(self): ''' Fetch the observed AE index for the time period covered in the logfile. Return *True* on success. Observed AE is automatically fetched from the Kyoto World Data Center via the :mod:`spacepy.pybats.kyoto` module. The associated :class:`spacepy.pybats.kyoto.KyotoAe` object, which holds the observed AE, is stored as *self.obs_ae* for future use. ''' import spacepy.pybats.kyoto as kt # Return if already obtained: if hasattr(self, 'obs_ae'): return True # Start and end time to collect observations: stime = self['time'][0] etime = self['time'][-1] # Attempt to fetch from Kyoto website: try: self.obs_ae = kt.fetch('ae', stime, etime) # Warn on failure: except BaseException as args: raise Warning('Failed to fetch Kyoto AE: ', args) return False return True
[docs] def add_kp_quicklook(self, target=None, loc=111, label=None, plot_obs=False, add_legend=True, obs_kwargs={'c': 'k', 'ls': '--', 'lw': 2}, **kwargs): ''' Similar to "dst_quicklook"-type functions, this method fetches observed Kp from the web and plots it alongside the Kp read from the GeoIndex file. Usage: >>> obj.kp_quicklook(target=SomeMplTarget) The target kwarg works like in other PyBats plot functions: it can be a figure, an axes, or None, and it determines where the plot is placed. Other kwargs customize the line. Label defaults to fa$K$e$_{P}$, extra kwargs are passed to pyplot.plot. Observed Kp can be added via the *plot_obs* kwarg. Kp is automatically fetched from the Kyoto World Data Center via the :mod:`spacepy.pybats.kyoto` module. The associated :class:`spacepy.pybats.kyoto.KyotoKp` object, which holds the observed Kp, is stored as *self.obs_kp* for future use. The observed line can be customized via the *obs_kwargs* kwarg, which is a dictionary of plotting keyword arguments. ''' # Set up plot target. fig, ax = set_target(target, figsize=(10, 4), loc=loc) # Create label: if not label: label = 'fa$K$e$_{P}$' if ('lat' in self.attrs) and ('k9' in self.attrs): label += ' (Lat=%04.1f$^{\\circ}$, K9=%03i)' % \ (self.attrs['lat'], self.attrs['k9']) # Sometimes, the "Kp" varname is caps, sometimes not. kp = 'Kp' if kp not in self.keys(): kp = 'kp' ax.plot(self['time'], self['Kp'], label=label, **kwargs) ax.set_ylabel('$K_{P}$') ax.set_xlabel('Time from ' + self['time'][0].isoformat()+' UTC') applySmartTimeTicks(ax, self['time']) if target is None: fig.tight_layout() if plot_obs: # Attempt to fetch Kp: if self.fetch_obs_kp(): # If successful, add to plot: self.obs_kp.add_histplot(target=ax, **obs_kwargs) applySmartTimeTicks(ax, self['time']) if add_legend: ax.legend(loc='best') return fig, ax
[docs] def add_ae_quicklook(self, target=None, loc=111, label=None, plot_obs=False, val='AE', add_legend=True, obs_kwargs={'c': 'k', 'ls': '--', 'lw': 1.5}, **kwargs): ''' Similar to "dst_quicklook"-type functions, this method fetches observed AE indices from the web and plots it alongside the corresponding AE read from the GeoInd file. Because there are four AE-like indices (AL, AU, AE, and AO), the kwarg *val* specifies which to plot (default is AE). Usage: >>> obj.ae_quicklook(target=SomeMplTarget) The target kwarg works like in other PyBats plot functions: it can be a figure, an axes, or None, and it determines where the plot is placed. Other kwargs customize the line. Extra kwargs are passed to pyplot.plot Observed AE can be added via the *plot_obs* kwarg. AE is automatically fetched from the Kyoto World Data Center via the :mod:`spacepy.pybats.kyoto` module. The associated :class:`spacepy.pybats.kyoto.KyotoAe` object, which holds the observed AE, is stored as *self.obs_kp* for future use. The observed line can be customized via the *obs_kwargs* kwarg, which is a dictionary of plotting keyword arguments. ''' # Set up plot target. fig, ax = set_target(target, figsize=(10, 4), loc=loc) if not label: label = 'Virtual {}'.format(val) ax.plot(self['time'], self[val], label=label, **kwargs) ax.set_ylabel('{} ($nT$)'.format(val)) ax.set_xlabel('Time from ' + self['time'][0].isoformat() + ' UTC') applySmartTimeTicks(ax, self['time']) if target is None: fig.tight_layout() if plot_obs: # Check for label in obs. kwargs: if 'label' not in obs_kwargs: obs_kwargs['label'] = 'Obs. ' + val if self.fetch_obs_ae(): ax.plot(self.obs_ae['time'], self.obs_ae[val.lower()], **obs_kwargs) applySmartTimeTicks(ax, self['time']) if add_legend: ax.legend(loc='best') return fig, ax
[docs] class VirtSat(LogFile): ''' A :class:`spacepy.pybats.LogFile` object tailored to virtual satellite output; includes special satellite-specific plotting methods. '''
[docs] def __init__(self, *args, **kwargs): from re import findall from scipy.interpolate import interp1d from matplotlib.dates import date2num super(VirtSat, self).__init__(keep_case=False, *args, **kwargs) # Attempt to extract the satellite's name and save it. try: s = self.attrs['file'] searchstr = r'sat_([\-\w]+)_\d+_n\d+\.sat|sat_(\w+)_n\d+\.sat' a = findall(searchstr, s)[0] name = list(filter(None, a))[0] except IndexError: name = None self.attrs['name'] = name # Create interpolation functions for position. self._interp = {} tnum = date2num(self['time']) for x in 'xyz': self._interp[x] = interp1d(tnum, self[x])
def __repr__(self): return 'Satellite object {} at {}'.format(self.attrs['name'], self.attrs['file'])
[docs] def calc_ndens(self): ''' Calculate number densities for each fluid. Species mass is ascertained via recognition of fluid name (e.g. OpRho is clearly oxygen). A full list of recognized fluids/species can be found by exploring the dictionary *mass* found in :mod:`~spacepy.pybats.bats`. Composition is also calculated as percent of total number density. New values are saved using the keys *speciesN* (e.g. *opN*) and *speciesFrac* (e.g. *opFrac*). ''' _calc_ndens(self)
[docs] def calc_temp(self, units='eV'): ''' Calculate plasma temperature for each fluid. Number density is calculated using *calc_ndens* if it hasn't been done so already. Temperature is obtained via density and pressure through the simple relationship P=nkT. Use the units kwarg to set output units. Current choices are KeV, eV, and K. Default is eV. ''' from spacepy.datamodel import dmarray units = units.lower() # Create dictionary of unit conversions. conv = {'ev': 6241.50935, # nPa/cm^3 --> eV. 'kev': 6.24150935, # nPa/cm^3 --> KeV. 'k': 72429626.47} # nPa/cm^3 --> K. # Calculate number density if not done already. if 'N' not in self: self.calc_ndens() # Find all number density variables. for key in list(self.keys()): # Next variable if not number density: if key[-1] != 'N': continue # Next variable if no matching pressure: if not key[:-1] + 'p' in self: continue self[key[:-1] + 't'] = dmarray( conv[units] * self[key[:-1] + 'p']/self[key], attrs={'units': units})
[docs] def calc_bmag(self): ''' Calculates total magnetic field magnitude via: $|B|=\\sqrt{B_X^2+B_Y^2+B_Z^2}$. Results stored as variable name *b*. ''' if 'b' not in self: self['b'] = np.sqrt(self['bx']**2 + self['by']**2 + self['bz']**2) return True
[docs] def calc_magincl(self, units='deg'): ''' Magnetic inclination angle (a.k.a. inclination angle) is defined: $\\Theta = sin^{-1}(B_Z/B)$. It is a crucial value when examining magnetic dynamics about geosychronous orbit, the tail, and other locations. This function calculates the magnetic inclination for the Virtual Satellite object and saves it as *b_incl*. Units default to degrees; the keyword **units** can be changed to 'rad' to change this. ''' if 'b' not in self: self.calc_bmag() incl = np.arcsin(self['bz'] / self['b']) if units == 'deg': self['b_incl'] = dmarray(incl * 180. / np.pi, {'units': 'degrees'}) elif units == 'rad': self['b_incl'] = dmarray(incl, {'units': 'radians'}) else: raise ValueError('Unrecognized units. Use "deg" or "rad"') return True
[docs] def get_position(self, time): ''' For an arbitrary time, *time*, return a tuple of coordinates for the satellite's position at that time in GSM coordinates. *time* should be type datetime.datetime, matplotlib.dates.date2num output (i.e., number of days (fraction part represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC, *plus* *one*), or a sequence of either. The satellite's position is interpolated (linearly) to *time*. ''' from matplotlib.dates import date2num # Test if sequence. if isinstance(time, (list, np.ndarray)): testval = time[0] else: testval = time # Test if datetime or not. if isinstance(testval, type(self['time'][0])): time = date2num(time) # Interpolate, using "try" as to not pass time limits and extrapolate. try: loc = (self._interp['x'](time), self._interp['y'](time), self._interp['z'](time)) except ValueError: loc = (None, None, None) return loc
[docs] def add_sat_loc(self, time, target, plane='XY', dobox=False, dolabel=False, size=12, c='k', **kwargs): ''' For a given axes, *target*, add the location of the satellite at time *time* as a circle. If kwarg *dolabel* is True, the satellite's name will be used to label the dot. Optional kwargs are any accepted by matplotlib.axes.Axes.plot. The kwarg *plane* specifies the plane of the plot, e.g., 'XY', 'YZ', etc. ''' # Get Axes' limits: xlim = target.get_xlim() ylim = target.get_ylim() plane = plane.lower() loc = self.get_position(time) if None in loc: return x = loc['xyz'.index(plane[0])] y = loc['xyz'.index(plane[1])] # Do not label satellite if outside axes bounds. if (x < min(xlim)) or (x > max(xlim)) or \ (y < min(ylim)) or (y > max(ylim)): dolabel = False target.plot(x, y, 'o', **kwargs) if dolabel: xoff = 0.03 * (xlim[1] - xlim[0]) if dobox: target.text(x + xoff, y, self.attrs['name'], bbox={'fc': 'w', 'ec': 'k'}, size=size, va='center') else: target.text(x + xoff, y, self.attrs['name'], size=size, va='center', color=c) # Restore Axes' limits. target.set_ylim(ylim) target.set_xlim(xlim)
[docs] def add_orbit_plot(self, plane='XY', target=None, loc=111, rbody=1.0, title=None, trange=None, add_grid=True, style='g.', adjust_axes=True, add_arrow=True, arrow_kwargs={'color': 'g', 'width': .05, 'ec': 'k'}, **kwargs): ''' Create a 2D orbit plot in the given plane (e.g. 'XY' or 'ZY'). Extra kwargs are handed to the plot function. Parameters ========== None Other Parameters ================ plane : string Set the plane in which to plot (XY, XZ, etc.) Defaults to XY. target : Matplotlib Figure or Axes object Set plot destination. Defaults to new figure. loc : 3-digit integer Set subplot location. Defaults to 111. adjust_axes : bool If True, axes will be customized to best display orbit (equal aspect ratio, grid on, planet drawn, etc.). Defaults to True. style: string A matplotlib line style specifier. Defaults to 'g.'. title : string Set title of axes. rbody : real Set radius of model inner boundary. Defaults to 1.0 trange : list of datetimes Set the time range to plot. Defaults to None, or entire dataset. add_grid : bool Turn on or off grid style of axes. Default is True. add_arrow : bool Add arrow at end of orbit path to indicate direction. Default is True. arrow_kwargs : dict Dictionary of arrow kwargs. Defaults to match line style. ''' from spacepy.pybats import add_body from spacepy.pybats.ram import grid_zeros fig, ax = set_target(target, figsize=(5, 5), loc=loc) plane = plane.upper() # Set time range of plot. if not trange: trange = [self['time'].min(), self['time'].max()] tloc = (self['time'] >= trange[0]) & (self['time'] <= trange[-1]) # Extract orbit X, Y, or Z. plane = plane.lower() if plane[0] in ['x', 'y', 'z']: x = self[plane[0]][tloc] else: raise ValueError('Bad dimension specifier: ' + plane[0]) if (plane[1] in ['x', 'y', 'z']) and (plane[0] != plane[1]): y = self[plane[1]][tloc] else: raise ValueError('Bad dimension specifier: ' + plane[1]) # Actually plot: ax.plot(x, y, style, **kwargs) # Add arrow to plot: if add_arrow: x_arr, y_arr = x[-1], y[-1] dx, dy = x[-1]-x[-2], y[-1] - y[-2] ax.arrow(x_arr, y_arr, dx, dy, **arrow_kwargs) # Finish customizing axis. if adjust_axes: ax.axis('equal') ax.set_xlabel('GSM %s' % (plane[0].upper())) ax.set_ylabel('GSM %s' % (plane[1].upper())) if title: ax.set_title(title) if add_grid: ax.grid() grid_zeros(ax) add_body(ax, rad=rbody, add_night=('X' in plane.upper())) return fig, ax