Source code for spacepy.datamanager

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Tools for manipulating paths, data, and subsets

Authors: Jon Niehof

Institution: University of New Hampshire

Contact: Jonathan.Niehof@unh.edu

Copyright 2015-2020 contributors


About datamanager
-----------------


Examples
--------
Examples go here

.. currentmodule:: spacepy.datamanager
"""

__all__ = ["DataManager", "apply_index", "array_interleave", "axis_index",
           "flatten_idx", "insert_fill", "rebin", "rev_index",
           "values_to_steps"]

import datetime
import operator
import os.path
import posixpath
import re

import numpy


[docs] class DataManager(object): """ THIS CLASS IS NOT YET COMPLETE, doesn't do much useful. Will have to do something that allows the config file to specify regex and other things, and then just the directory to be changed (since regex, etc. Parameters ========== directories : list A list of directories that might contain the data file_fmt : string Regular expression that matches the files desired. Will also recognize strftime parameters %w %d %m %y %Y %H %M %s %j %U %W, all zero-pad. https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior Can have subdirectory reference, but separator should be unix-style, with no leading slash. period : string Size of file; can be a number followed by one of d, m, y, H, M, s. Anything else is assumed to be "irregular" and files treated as if there are neither gaps nor overlaps in the sequence. If not specified, will be assumed to match one count of the smallest unit in the format string. Examples ======== """
[docs] def __init__(self, directories, file_fmt, descend=False, period=None): """ """ #Duplicate from class docstring. Consider autoclass_content = "both" #Convert to system path format directories = [os.path.expandvars(os.path.expanduser( os.path.normpath(d))) for d in directories] file_fmt = posixpath.normpath(file_fmt) #The period matching might go into RePath if period is None: period = next( ('1{0}'.format(i) for i in 'sMHdmyY' if i in file_fmt), None) elif not re.match(r'^\d+[yYmdHMs]$', period): period = None #irregular, fun! self.directories = directories self.descend = descend self.period = period self.file_fmt = RePath(file_fmt)
[docs] def get_filename(self, dt): """ Returns the filename corresponding to a particular point in time """ if self.period: flist = self.files_matching(dt) else: raise NotImplementedError
#Now figure out the priority..
[docs] def files_matching(self, dt=None): """ Return all the files matching this file format Parameters ========== dt : datetime Optional; if specified, match only files for this date. Returns ======= out : generator Iterates over every file matching the format specified at creation. Note this is specified in native path format! """ #Use os.walk. If descend is False, only continue for matching #the re to this point. If True, compare branch to entire re but #walk everything for d in self.directories: native_d = os.path.normpath(d) #Do the walk in native paths for (dirpath, dirnames, filenames) in \ os.walk(native_d, topdown=True, followlinks=True): #dirpath is FULL DIRECTORY to this point, make relative relpath = dirpath[len(native_d) + 1:] #Convert to POSIX for comparisons if os.path.sep != posixpath.sep and relpath: relpath = posixpath.join(*RePath.path_split( relpath, native=True)) if not self.descend: if relpath and not \ self.file_fmt.match(relpath, dt, 'start'): continue for i in range(-len(dirnames), 0): dirname = dirnames[i] if os.path.sep != posixpath.sep and dirname: dirname = posixpath.join(*RePath.path_split( dirname, native=True)) if not self.file_fmt.match(posixpath.join( relpath, dirname), dt, 'start'): del dirnames[i] for f in filenames: if self.file_fmt.match(posixpath.join(relpath, f), dt, 'end' if self.descend else None): yield os.path.join(dirpath, f)
[docs] class RePath(object): """ A path based on a regular expression + time format Parameters ========== expression : string Regular expression that matches the files desired. Will also recognize strftime parameters %w %d %m %y %Y %H %M %s %j %U %W, all zero-pad. https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior Can have subdirectory reference, but separator should be unix-style, with no leading slash. Matching is normally done against entire string, anchors should NOT be included. """ fmt_to_re = { 'd': r'[0-3]\d', 'm': r'[0-2]\d', 'y': r'\d\d', 'Y': r'\d{4}', 'H': r'[0-5]\d', 'M': r'[0-5]\d', 's': r'[0-6]\d', 'j': r'[0-3]\d\d', 'U': r'[0-5]\d', 'W': r'[0-5]\d' }
[docs] def __init__(self, expression): self.file_fmt = expression #This should have backrefs where the same format occurs twice #(year in both directory and file, for example) self.file_re = re.sub(r'(?!(?:%%)+)%([wdmyYHMsjUW])', lambda x: self.fmt_to_re[x.group(1)], expression) self.file_fmt_split = self.path_split(self.file_fmt) self.file_re_split = self.path_split(self.file_re)
[docs] def match(self, string, dt=None, where=None): """ Matches a string against a path or part thereof, optionally anchored at a particular date/time Other Parameters ================ dt : datetime.datetime The time to specifically match; otherwise matches all files. where : str Where to match: None to match the string to the entire path (default); ``'start'`` to match entire string against the start of the path; ``'end'`` to match entire path against end of string. Note this matches the last elements of the string, not just the last characters, i.e., ``oo/bar`` will not match ``foo/bar``. Similarly, ``'start'`` matches the first elements of the path, i.e., ``foo/ba`` will not match ``foo/bar`` ``start`` matches subset of path, i.e., the string is a directory that may contain full matches further down the tree. ``end`` matches a subset of the string, i.e, the string is a path to a file that would be a complete match except it has additional path elements leading. This is the order that tends to be useful. Returns ======= out : re.MatchObject The result of the match. """ datestr = (datetime.datetime.strftime(dt, self.file_fmt) if dt else self.file_re) if where is None: pat = datestr elif where.lower() == 'end': #Cut down string to match path pattern pat = datestr string = self.path_slice(string, -len(self.file_re_split), None, 1) elif where.lower() == 'start': #Does path pattern start like string? pat = self.path_slice(datestr, 0, len(self.path_split(string))) else: raise(ValueError("where must be 'start', 'stop', or None, not {0}". format(where))) return re.match('^' + pat + '$', string)
[docs] @staticmethod def path_split(path, native=False): """ Break a path apart into a list for each path element. Parameters ========== path : str Path to split native : bool Is this a native path or UNIX-style? (default False, UNIX) Returns ======= out : list of str One path element (directory or file) per item """ split = os.path.split if native else posixpath.split res = [] while path: base, tail = split(path) if base == path: #No further splitting res.insert(0, path) break res.insert(0, tail) path = base return res
[docs] @staticmethod def path_slice(path, start, stop=None, step=None, native=False): """ Slice a path by elements, as in getitem or [] Parameters ========== path : str Path to slice start : int First path element to return, or the only element if stop and step are not specified. Other Parameters ================ stop : int First path element to NOT return, i.e., one past the last. If ``stop`` is not specified but ``step`` is, return to end. step : int Increment between each. native : bool Is this a native path or UNIX-style? (default False, UNIX) Returns ======= out : str Selection of the path Examples ======== >>> path = "foo/bar/baz" >>> spacepy.datamanager.DataManager.path_slice(path, 1) "bar" >>> spacepy.datamanager.DataManager.path_slice(path, 0, step=2) "foo/baz" >>> spacepy.datamanager.DataManager.path_slice(path, 1, 3) "bar/baz" """ if stop is None and step is None: return RePath.path_split(path, native=native)[start] else: join = (os.path if native else posixpath).join return join(*RePath.path_split(path, native=native) [start:stop:step])
[docs] def insert_fill(times, data, fillval=numpy.nan, tol=1.5, absolute=None, doTimes=True): """Populate gaps in data with fill. Continuous data are often treated differently from discontinuous data, e.g., matplotlib will draw lines connecting data points but break the line at fill. Often data will be irregularly sampled but also contain large gaps that are not explicitly marked as fill. This function adds a single record of explicit fill to each gap, defined as places where the spacing between input times is a certain multiple of the median spacing. Parameters ========== times : sequence Values representing when the data were taken. Must be one-dimensional, i.e., each value must be scalar. Not modified data : sequence Input data. Other Parameters ================ fillval : Fill value, same type as ``data``. Default is ``numpy.nan``. If scalar, will be repeated to match the shape of ``data`` (minus the time axis). .. note:: The default value of ``nan`` will not produce good results with integer input. tol : float Tolerance. A single fill value is inserted between adjacent values where the spacing in ``times`` is strictly greater than ``tol`` times the median of the spacing across all ``times``. The inserted time for fill is halfway between the time on each side. (Default 1.5) absolute : An absolute value for maximum spacing, of a type that would result from a difference in ``times``. If specified, ``tol`` is ignored and any gap strictly larger than ``absolute`` will have fill inserted. doTimes : boolean If True (default), will return a tuple of the times (with new values inserted for the fill records) and the data with new fill values. If False, will only return the data -- useful for applying fill to multiple arrays of data on the same timebase. Raises ====== ValueError : if can't identify the time axis of data Try using :func:`numpy.rollaxis` to put the time axis first in both ``data`` and ``times``. Returns ======= times, data : tuple of sequence Copies of input times and data, fill added in gaps (``doTimes`` True) data : sequence Copy of input data, with fill added in gaps (``doTimes`` False) Examples ======== This example shows simple hourly data with a gap, populated with fill. Note that only a single fill value is inserted, to break the sequence of valid data rather than trying to match the existing cadence. >>> import datetime >>> import numpy >>> import spacepy.datamanager >>> t = [datetime.datetime(2012, 1, 1, 0), datetime.datetime(2012, 1, 1, 1), datetime.datetime(2012, 1, 1, 2), datetime.datetime(2012, 1, 1, 5), datetime.datetime(2012, 1, 1, 6)] >>> temp = [30.0, 28, 27, 32, 35] >>> filled_t, filled_temp = spacepy.datamanager.insert_fill(t, temp) >>> filled_t array([datetime.datetime(2012, 1, 1, 0, 0), datetime.datetime(2012, 1, 1, 1, 0), datetime.datetime(2012, 1, 1, 2, 0), datetime.datetime(2012, 1, 1, 3, 30), datetime.datetime(2012, 1, 1, 5, 0), datetime.datetime(2012, 1, 1, 6, 0)], dtype=object) >>> filled_temp array([ 30., 28., 27., nan, 32., 35.]) .. plot:: :include-source: This example plots "gappy" data with and without explicit fill values. >>> import matplotlib.pyplot as plt >>> import numpy >>> import spacepy.datamanager >>> x = numpy.append(numpy.arange(0, 6, 0.1), numpy.arange(12, 18, 0.1)) >>> y = numpy.sin(x) >>> xf, yf = spacepy.datamanager.insert_fill(x, y) >>> fig = plt.figure() >>> ax0 = fig.add_subplot(211) >>> ax0.plot(x, y) >>> ax1 = fig.add_subplot(212) >>> ax1.plot(xf, yf) >>> plt.show() """ times = numpy.asanyarray(times) data = numpy.asanyarray(data) assert(len(times.shape) == 1) if len(times) == data.shape[0]: timeaxis = 0 else: matches = numpy.nonzero(numpy.asanyarray(data.shape) == len(times))[0] if len(matches) != 1: raise ValueError( "Unable to uniquely match shape of data to count of times.") timeaxis = matches[0] fillshape = numpy.delete(data.shape, timeaxis) #shape of data w/o time axis if (numpy.shape(fillval) != fillshape).any(): if numpy.shape(fillval) == (): fillval = numpy.tile(fillval, fillshape) else: raise ValueError("Cannot match shape of fill to shape of data") diff = numpy.diff(times) if hasattr(diff[0], 'seconds'): #datetime diff = numpy.vectorize(lambda x: x.days * 86400.0 + x.seconds + x.microseconds / 1.0e6)(diff) if absolute is not None: absolute = absolute.days * 86400.0 + absolute.seconds + \ absolute.microseconds / 1.0e6 if absolute is None: idx = numpy.nonzero(diff > (numpy.median(diff) * tol))[0] + 1 else: idx = numpy.nonzero(diff > absolute)[0] + 1 data = numpy.insert(data, idx, numpy.repeat(fillval, len(idx)), axis=timeaxis) #NOOP if no fill if not doTimes: return data try: filltimes = (times[idx] + times[idx - 1]) / 2.0 except TypeError: filltimes = times[idx - 1] + numpy.vectorize(lambda x: datetime.timedelta(seconds=x / 2.0))(diff[idx - 1]) times = numpy.insert(times, idx, filltimes) return times, data
[docs] def apply_index(data, idx): """Apply an array of indices to data. Most useful in dealing with the output from :func:`numpy.argsort`, and best explained by the example. Parameters ========== data : array Input data, at least two dimensional. The 0th dimension is treated as a "time" or "record" dimension. idx : sequence 2D index to apply to the import data. The 0th dimension must be the same size as ``data``'s 0th dimension. Dimension 1 must be the same size as one other dimension in data (the first match found is used); this is referred to as the "index dimension." Raises ====== ValueError : if can't match the shape of data and indices Returns ======= data : sequence View of ``data``, with index applied. For each index of the 0th dimension, the values along the index dimension are obtained by applying the value of ``idx`` at the same index in the 0th dimension. This is repeated across any other dimensions in ``data``. .. warning:: No guarantee is made whether the returned data is a copy of the input data. Modifying values in the input may change the values of the input. Call :meth:`~numpy.ndarray.copy` if a copy is required. Examples ======== Assume ``flux`` is a 3D array of fluxes, with a value for each of time, pitch angle, and energy. Assume energy is not necessarily constant in time, nor is ordered in the energy dimension. If ``energy`` is a 2D array of the energies as a function of energy step for each time, then the following will sort the flux at each time and pitch angle in energy order. >>> idx = numpy.argsort(energy, axis=1) >>> flux_sorted = spacepy.datamanager.apply_index(flux, idx) """ data = numpy.asanyarray(data) idx = numpy.asanyarray(idx) if len(idx.shape) != 2: raise ValueError("idx must have dimensions 2, not {0}".format( len(idx.shape))) if len(data.shape) < 2: raise ValueError("data must have at least dimensions 2") if idx.shape[0] != data.shape[0]: raise ValueError("data and idx must have same size in " "0th dimension") if not idx.shape[1] in data.shape[1:]: raise ValueError("Size of idx dimension 1 must match a dimension in " "data") idx_dim = data.shape[1:].index(idx.shape[1]) + 1 return numpy.rollaxis( numpy.rollaxis(data, idx_dim, 1) #make time and index dim adjacent #get a 2d array where every element matches index of first axis [numpy.mgrid[0:idx.shape[0], slice(idx.shape[1])][0], idx, #2d array, every element is desired index of second axis ...] #and the other axes come along for the ride , 1, idx_dim + 1) #and put index dim back in place
[docs] def array_interleave(array1, array2, idx): """Create an array containing all elements of both array1 and array2 ``idx`` is an index on the output array which indicates which elements will be populated from ``array1``, i.e., ``out[idx] == array1`` (in order.) The other elements of ``out`` will be filled, in order, from ``array2``. Parameters ========== array1 : array Input data. array2 : array Input data. Must have same number of dimensions as ``array1``, and all dimensions except the zeroth must also have the same length. idx : array A 1D array of indices on the zeroth dimension of the output array. Must have the same length as the zeroth dimension of ``array1``. Returns ======= out : array All elements from ``array1`` and ``array2``, interleaved according to ``idx``. Examples ======== >>> import numpy >>> import spacepy.datamanager >>> a = numpy.array([10, 20, 30]) >>> b = numpy.array([1, 2]) >>> idx = numpy.array([1, 2, 4]) >>> spacepy.datamanager.array_interleave(a, b, idx) array([ 1, 10, 20, 2, 30]) """ array1 = numpy.asanyarray(array1) array2 = numpy.asanyarray(array2) idx = numpy.asanyarray(idx) assert(len(array1.shape) == len(array2.shape)) assert(array1.shape[1:] == array2.shape[1:]) assert(array1.dtype == array2.dtype) outarray = numpy.empty(dtype=array1.dtype, shape=((array1.shape[0] + array2.shape[0],) + array1.shape[1:])) outarray[idx, ...] = array1 idx_comp = numpy.ones((outarray.shape[0],), dtype=numpy.bool) idx_comp[idx] = False outarray[idx_comp, ...] = array2 return outarray
[docs] def values_to_steps(array, axis=-1): """Transform values along an axis to their order in a unique sequence. Useful in, e.g., converting a list of energies to their steps. Parameters ========== array : array Input data. Other Parameters ================ axis : int Axis along which to find the steps. Returns ======= steps : array An array, the same size as ``array``, with values along ``axis`` corresponding to the position of the value in ``array`` in a unique, sorted, set of the values in ``array`` along that axis. Differs from :func:`~numpy.argsort` in that identical values will have identical step numbers in the output. Examples ======== >>> import numpy >>> import spacepy.datamanager >>> data = [[10., 12., 11., 9., 10., 12., 11., 9.], [10., 12., 11., 9., 14., 16., 15., 13.]] >>> spacepy.datamanager.values_to_steps(data) array([[1, 3, 2, 0, 1, 3, 2, 0], [1, 3, 2, 0, 5, 7, 6, 4]]) """ array = numpy.asanyarray(array) sortidx = array.argsort(axis=axis) steps = rev_index(sortidx, axis=axis) d = numpy.diff(apply_index(array, sortidx), axis=axis) #Everywhere in SORTED array that the VALUE is same as one before same = numpy.insert(d==0, 0, False, axis=axis) #Number of duplicate indices BEFORE current index, in SORTED array delta = numpy.cumsum(same, axis=-1) #Get delta into the unsorted frame, and correct for uniqueness return steps - delta.ravel()[ flatten_idx(rev_index(sortidx, axis=axis), axis=axis)]\ .reshape(steps.shape)
[docs] def flatten_idx(idx, axis=-1): """Convert multidimensional index into index on flattened array. Convert a multidimensional index, that is values along a particular axis, so that it can derefence the flattened array properly. Note this is not the same as :func:`~numpy.ravel_multi_index`. Parameters ========== idx : array Input index, i.e. a list of elements along a particular axis, in the style of :func:`~numpy.argsort`. Other Parameters ================ axis : int Axis along which ``idx`` operates, defaults to the last axis. Returns ======= flat : array A 1D array of indices suitable for indexing the flat version of the array See Also ======== apply_index Examples ======== >>> import numpy >>> import spacepy.datamanager >>> data = numpy.array([[3, 1, 2], [3, 2, 1]]) >>> idx = numpy.argsort(data, -1) >>> idx_flat = spacepy.datamanager.flatten_idx(idx) >>> data.ravel() #flat array array([3, 1, 2, 3, 2, 1]) >>> idx_flat #indices into the flat array array([1, 2, 0, 5, 4, 3]) >>> data.ravel()[idx_flat] #index applied to the flat array array([1, 2, 3, 1, 2, 3]) """ idx = numpy.asanyarray(idx) if not idx.dtype.kind in ('i', 'u'): idx = idx.astype(int) preshape = idx.shape[:axis] postshape = idx.shape[axis:] stride = int(numpy.prod(postshape[1:])) #1 if applied to empty #The index on this axis moves stride elements in flat outidx = idx.flatten() * stride #makes a copy #First add the offsets to get us to [..., idx @ axis = 0, 0...) outidx += numpy.repeat( numpy.arange(0, len(outidx), int(numpy.prod(postshape)), dtype=idx.dtype), numpy.prod(postshape)) #Now offsets for non-zero on the trailing axes [0, 0, ... 0@axis, ...] outidx += numpy.tile(numpy.arange(0, stride, dtype=idx.dtype), int(numpy.prod(preshape)) * idx.shape[axis]) return outidx
[docs] def axis_index(shape, axis=-1): """Returns array of indices along axis, for all other axes Parameters ========== shape : tuple Shape of the output array Other Parameters ================ axis : int Axis along which to return indices, defaults to the last axis. Returns ======= idx : array An array of indices. The value of each element is that element's index along ``axis``. See Also ======== numpy.mgrid : This function is a special case Examples ======== For a shape of ``(i, j, k, l)`` and ``axis`` = -1, ``idx[i, j, k, :] = range(l)`` for all ``i``, ``j``, ``k``. Similarly, for the same shape and ``axis = 1``, ``idx[i, :, k, l] = range(j)`` for all ``i``, ``k``, ``l``. >>> import numpy >>> import spacepy.datamanager >>> spacepy.datamanager.axis_index((5, 3)) array([[0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2]]) >>> spacepy.datamanager.axis_index((5, 3), 0) array([[0, 0, 0], [1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4]]) """ return operator.getitem(numpy.mgrid, [slice(i) for i in shape])[axis]
[docs] def rev_index(idx, axis=-1): """From an index, return an index that reverses the action of that index Essentially, ``a[idx][rev_index(idx)] == a`` .. note:: This becomes more complicated in multiple dimensions, due to the vagaries of applying a multidimensional index. Parameters ========== idx : array Indices onto an array, often the output of :func:`~numpy.argsort`. Other Parameters ================ axis : int Axis along which to return indices, defaults to the last axis. Returns ======= rev_idx : array Indices that, when applied to an array after ``idx``, will return the original array (before the application of ``idx``). See Also ======== apply_index Examples ======== >>> import numpy >>> import spacepy.datamanager >>> data = numpy.array([7, 2, 4, 6, 3]) >>> idx = numpy.argsort(data) >>> data[idx] #sorted array([2, 3, 4, 6, 7]) >>> data[idx][spacepy.datamanager.rev_index(idx)] #original array([7, 2, 4, 6, 3]) """ #Want an idx2 such that x[idx][idx2] == x #idx is position to value map #Populate every POSITION in idx2 with the POSITION in idx that #has the VALUE of the idx2 position #searchsorted on range? idx_out = numpy.empty_like(idx).ravel() idx_out[flatten_idx(idx, axis)] = axis_index(idx.shape, axis).ravel() return idx_out.reshape(idx.shape)
def _find_shape(bigshape, littleshape): """Increase dimensionality of small array to match larger Add degenerate dimensions to a lesser-dimensioned array to match a larger-dimensioned array. Parameters ========== bigshape : tuple The shape of the larger-dimmed array littleshape : tuple The shape of the smaller-dimmed array Returns ======= tuple A shape of the same length/dimensions of ``bigshape`` with dimension sizes taken from ``littleshape`` or of size 1. Suitable for calling :func:`numpy.reshape` on array of shape ``littleshape``. """ newshape = [] littleidx = 0 for i, size in enumerate(bigshape): if littleidx < len(littleshape): # Still have "little" to consume if size == littleshape[littleidx]: # Match, just move along newshape.append(size) littleidx += 1 continue if littleshape[littleidx] == 1: # Consume degenerate dim littleidx += 1 newshape.append(1) # Add a degenerate dim if littleidx < len(littleshape): # Didn't consume them all raise ValueError('Unable to make shape {} compatible with shape {}' .format(littleshape, bigshape)) return tuple(newshape)
[docs] def rebin(data, bindata, bins, axis=-1, bintype='mean', weights=None, clip=False, bindatadelta=None): """Rebin one axis of input data based on values of another array This is clearest with an example. Consider a flux as a function of time, energy, and the look direction of a detector (could be multiple detectors, or spin sectors.) The flux is then 3-D, dimensioned Nt x Ne x Nl. Now consider that each look direction has an associated pitch angle that is a function of time and thus stored in an array Nt x Nl. Then this function will redimension the flux into pitch angle bins (rather than tags.) So consider the PA bins to have dimension Np + 1 (because it represents the edges, the number of bins is one less than the dimension.) Then the output will be dimensioned Nt x Ne x Np. ``bindata`` must be same or lesser dimensionality than ``data``. Any axes which are present must be either of size 1, or the same size as ``data``. So for ``data`` 100x5x20, ``bindata`` may be 100x5x20, or 100, or 100x1x20, but not 100x20x5. This function will insert axes of size 1 as needed to match dimensionality. Parameters ========== data : :class:`~numpy.ndarray` N-dimensional array of data to be rebinned. ``numpy.nan`` are ignored. bindata : :class:`~numpy.ndarray` M-dimensional (M<=N) array of values to be compared to the bins. bins : :class:`~numpy.ndarray` 1-D array of bin edges. Output dimension will be this size minus 1. Any values in ``bindata`` that don't fall in the bins will be omitted from the output. (See ``clip`` to change this behavior). Other Parameters ================ axis : int Axis of ``data`` to rebin. This axis will disappear in the output and be replaced with an axis of the size of ``bins`` less one. (Default -1, last axis) bintype : str Type of rebinning to perform: mean Return the mean of all values in the bin (default) unc Return the quadrature mean of all values in the bin, for propagating uncertainty count Return the count of values that fall in each bin. weights : :class:`~numpy.ndarray` Relative weight of each sample in ``bindata``. Must be same shape as ``bindata``. Purely relative, i.e. the output is only affected based on the total of ``weights`` if ``bintype`` is ``count``. Note if ``weights`` is specified, ``count`` returns the sum of the weights, not the count of individual samples. clip : boolean Clip data to the bins. If true, all input data will be assigned a bin and data outside the range of the bin edges will be assigned to the extreme bins. If false (default), input data outside the bin ranges will be ignored. bindatadelta : :class:`~numpy.ndarray` By default, the ``bindata`` are treated as point values. If ``bindatadelta`` is specified, it is treated as the half-width of the ``bindata``, allowing a single input value to be split between output bins. Must be scalar, or same shape as ``bindata``. Note that input values are not weighted by the bin width, but by number of input values or by ``weights``. (Combining ``weights`` with ``bindatadelta`` is not comprehensively tested.) Returns ======= :class:`~numpy.ndarray` ``data`` with one axis redimensioned, from its original dimension to the bin dimension. Examples ======== Consider a particle flux distribution that's a function of energy and pitch angle. For simplicity, assume that the energy dependence is a simple power law and the pitch angle dependence is Gaussian, with a peak whose position oscillates in time over a period of about one hour. This is fairly non-physical but illustrative. First making the relevant imports:: >>> import matplotlib.pyplot >>> import numpy >>> import spacepy.datamanager >>> import spacepy.plot The functional form of the flux is then:: >>> def j(e, t, a): ... return e ** -2 * (1 / (90 * numpy.sqrt(2 * numpy.pi))) \\ ... * numpy.exp( ... -0.5 * ((a - 90 + 90 * numpy.sin(t / 573.)) / 90.) ** 2) Illustrating the flux at one energy as a function of pitch angle:: >>> times = numpy.arange(0., 7200, 5) >>> alpha = numpy.arange(0, 181., 2) # Add a dimension so the flux is a 2D array >>> flux = j(1., numpy.expand_dims(times, 1), ... numpy.expand_dims(alpha, 0)) >>> spacepy.plot.simpleSpectrogram(times, alpha, flux, cb=False, ... ylog=False) >>> matplotlib.pyplot.ylabel('Pitch angle (deg)') >>> matplotlib.pyplot.xlabel('Time (sec)') >>> matplotlib.pyplot.title('Flux at 1 MeV') .. plot:: pyplots/datamanager_rebin_1.py Or the flux at one pitch angle as a function of energy:: >>> energies = numpy.logspace(0, 3, 50) >>> flux = j(numpy.expand_dims(energies, 0), ... numpy.expand_dims(times, 1), 90.) >>> spacepy.plot.simpleSpectrogram(times, energies, flux, cb=False) >>> matplotlib.pyplot.ylabel('Energy (MeV)') >>> matplotlib.pyplot.xlabel('Time (sec)') >>> matplotlib.pyplot.title('Flux at 90 degrees') .. plot:: pyplots/datamanager_rebin_2.py The measurement is usually not aligned with a pitch angle grid, and the detector pointing in pitch angle space usually varies with time. Taking a very simple case of eight detectors that sweep through pitch angle space in an organized fashion at ten degrees per minute, the measured pitch angle as a function of detector and time is:: >>> def pa(d, t): ... return (d * 22.5 + t * (2 * (d % 2) - 1)) % 180 >>> lines = matplotlib.pyplot.plot( ... times, pa(numpy.arange(8).reshape(1, -1), times.reshape(-1, 1)), ... marker='o', ms=1, linestyle='') >>> matplotlib.pyplot.legend(lines, ... ['Detector {}'.format(i) for i in range(4)], loc='best') >>> matplotlib.pyplot.xlabel('Time (sec)') >>> matplotlib.pyplot.ylabel('Pitch angle (deg)') >>> matplotlib.pyplot.title('Measured pitch angle by detector') .. plot:: pyplots/datamanager_rebin_3.py Assuming a coarser measurement in time and energy than used to illustrate the distribution above, the measured flux as a function of time, detector, and energy is constructed:: >>> times = numpy.arange(0., 7200, 300) #5 min cadence >>> alpha = pa(numpy.arange(8).reshape(1, -1), times.reshape(-1, 1)) >>> energies = numpy.logspace(0, 3, 10) #10 energy channels (3/decade) # Every dimension (t, detector, e) gets its own numpy axis >>> flux = j(numpy.reshape(energies, (1, 1, -1)), numpy.reshape(times, (-1, 1, 1)), numpy.expand_dims(alpha, -1)) >>> flux.shape (24, 8, 10) The flux at an energy as a function of detector is not very useful:: >>> spacepy.plot.simpleSpectrogram(times, numpy.arange(8), ... flux[..., 0], cb=False, ylog=False) >>> matplotlib.pyplot.ylabel('Detector') >>> matplotlib.pyplot.xlabel('Time (sec)') >>> matplotlib.pyplot.title('Flux at 1 MeV') .. plot:: pyplots/datamanager_rebin_4.py As a function of energy for one detector, the energy dependence is apparent but time and pitch angle effects are confounded:: >>> spacepy.plot.simpleSpectrogram(times, energies, flux[:, 0, :], ... cb=False) >>> matplotlib.pyplot.ylabel('Energy (MeV)') >>> matplotlib.pyplot.xlabel('Time (sec)') >>> matplotlib.pyplot.title('Flux in detector 0') .. plot:: pyplots/datamanager_rebin_5.py What is needed is to recover the array of flux dimensioned by time, pitch angle, and energy, with appropriate pitch angle bins. The assumption is that the pitch angle as a function of time and detector is measured and thus the ``alpha`` array is available. Using that array, ``rebin`` can change flux from time, detector, energy bins to time, pitch angle, energy bins. The axis 1 changes from a detector dimension to pitch angle:: >>> pa_bins = numpy.arange(0, 181, 36) >>> flux_by_pa = spacepy.datamanager.rebin( ... flux, alpha, pa_bins, axis=1) >>> flux_by_pa.shape (24, 6, 10) This can then be visualized. The pitch angle coverage is not perfect, but the original shape of the distribution is apparent, and further analysis can be performed on the regular pitch angle grid:: >>> spacepy.plot.simpleSpectrogram(times, pa_bins, flux_by_pa[..., 0], ... cb=False, ylog=False) >>> matplotlib.pyplot.ylabel('Pitch angle (deg)') >>> matplotlib.pyplot.xlabel('Time (sec)') >>> matplotlib.pyplot.title('Flux at 1MeV') .. plot:: pyplots/datamanager_rebin_6.py Or by energy:: >>> spacepy.plot.simpleSpectrogram(times, energies, flux_by_pa[:, 2, :], ... cb=False) >>> matplotlib.pyplot.ylabel('Energy (MeV)') >>> matplotlib.pyplot.xlabel('Time (sec)') >>> matplotlib.pyplot.title('Flux at 90 degrees') .. plot:: pyplots/datamanager_rebin_7.py ``rebin`` can be used for higher dimension data, if the pitch angle itself depends on energy (e.g. if an energy sweep takes substantial time), and to propagate uncertainties through the rebinning. It can also be used to rebin on the time axis, e.g. for transforming time base. """ makefloat = lambda x: x if isinstance(x, numpy.ndarray)\ and issubclass(x.dtype.type, numpy.floating)\ else numpy.require(x, dtype=float) bintype = bintype.lower() assert bintype in ('mean', 'count', 'unc') data = makefloat(data) bindata = makefloat(bindata) if axis < 0: axis = len(data.shape) + axis binnedshape = _find_shape(data.shape, bindata.shape) if weights is not None: weights = makefloat(weights) assert weights.shape == bindata.shape weights = numpy.reshape(weights, binnedshape) if bindatadelta is not None: if not numpy.isscalar(bindatadelta): bindatadelta = makefloat(bindatadelta) assert bindata.shape == bindatadelta.shape bindatadelta = numpy.reshape(bindatadelta, binnedshape) bindatadelta = numpy.rollaxis( bindatadelta, axis=axis, start=len(data.shape)) # Add axes to match shapes. Move the axis to rebin to the end of the line. bindata = numpy.reshape(bindata, binnedshape) indata = data # Holding a reference without transformations data = numpy.rollaxis(data, axis=axis, start=len(data.shape)) bindata = numpy.rollaxis(bindata, axis=axis, start=len(data.shape)) nbins = len(bins) - 1 # Get an array, last two axes of which are a matrix of # (newbin, oldbin) that is the fraction of oldbin (the input bin) that # falls within newbin # Special case if bindata is point: 1 where oldbin is in newbin, else 0 # This involves adding a newbin axis to the old bins, and an oldbin axis # to the (end of) the bins outbin_shape = (1,) * (len(data.shape) - 1) + (-1, 1) if bindatadelta is None: # What bin is every data point of the binned data in whichbin = numpy.digitize(bindata, bins) - 1 if clip: whichbin[whichbin < 0] = 0 whichbin[whichbin >= nbins] = (nbins - 1) select = numpy.require( numpy.expand_dims(whichbin, axis=-2) == numpy.reshape( numpy.arange(nbins, dtype=int), outbin_shape), dtype=int) else: bindatamin = bindata - bindatadelta bindatamax = bindata + bindatadelta if clip: bindatamin[bindatamin < bins[0]] = bins[0] bindatamax[bindatamax > bins[-1]] = bins[-1] # The edges of the output and input bins, on a common shape # that ends with (outputbins, inputbins) bindatamin = numpy.expand_dims(bindatamin, axis=-2) bindatamax = numpy.expand_dims(bindatamax, axis=-2) binmin = numpy.reshape(bins[:-1], outbin_shape) binmax = numpy.reshape(bins[1:], outbin_shape) # Overlap of input/output bins, if it exists, ends when either does overlap_top = numpy.minimum(bindatamax, binmax) # And it start at the higher of the two overlap_bottom = numpy.maximum(bindatamin, binmin) # No overlap if top < bottom overlap = numpy.maximum(overlap_top - overlap_bottom , 0) # Normalize the overlap to fraction of the input bin select = overlap / (bindatamax - bindatamin) if weights is not None: # Apply weights to the inputs select = select * numpy.expand_dims(weights, axis=-2) # Add a degenerate dimension to the end of data, so now # the data end in dims (oldbin, newbin) data = numpy.expand_dims(data, axis=-1) idx = numpy.isnan(data) counts = numpy.matmul(select, ~idx)[..., 0] if bintype == 'count': return numpy.rollaxis(counts, axis=-1, start=axis) if bintype == 'unc': # Square what we're summing over data = data ** 2 select = select ** 2 if numpy.may_share_memory(indata, data): # Don't overwrite input data = data.copy() data[idx] = 0 data_sum = numpy.matmul(select, data)[..., 0] data_sum[counts == 0] = numpy.nan counts[counts == 0] = 1 # Suppress error when nan/0 if bintype == 'unc': data_sum = numpy.sqrt(data_sum) avg = data_sum / counts # Put the binned axis back in place avg = numpy.rollaxis(avg, axis=-1, start=axis) return avg