Source code for spacepy.pycdf.istp

#!/usr/bin/env python

"""Support for ISTP-compliant CDFs

The `ISTP metadata standard <https://spdf.gsfc.nasa.gov/sp_use_of_cdf.html>`_
specifies the interpretation of the attributes in a CDF to describe
relationships between the variables and their physical interpretation.

This module supports that subset of CDFs.

Authors: Jon Niehof

Additional Contributors: Lorna Ellis, Asher Merrill

Institution: University of New Hampshire

Contact: Jonathan.Niehof@unh.edu
"""

import collections
import datetime
import functools
import inspect
import itertools
import math
import os.path
import re

import numpy
import spacepy.datamodel
import spacepy.pycdf
import spacepy.pycdf.const


[docs] class VariableChecks(object): """ISTP compliance checks for a single variable. Checks a variable's compliance with ISTP standards. This mostly performs checks that are not currently performed by the `ISTP skeleton editor <https://spdf.gsfc.nasa.gov/skteditor/>`_. All tests return a list, one error string for every noncompliance found (empty list if compliant). `all` will perform all tests and concatenate all errors. """ #When adding new tests, add to list above #Validation failures should be formatted as a sentence (initial cap, #closing period) and NOT include the variable name.
[docs] @classmethod def all(cls, v, catch=False): """Perform all variable tests Parameters ---------- v : `~.pycdf.Var` Variable to check catch : bool Catch exceptions in tests (default False). If True, any exceptions in subtests will result in an addition to the validation failures of the form "Test x did not complete." Calling the individual test will reveal the full traceback. Returns ------- list of str Description of each validation failure. Examples -------- >>> import spacepy.pycdf >>> import spacepy.pycdf.istp >>> f = spacepy.pycdf.CDF('foo.cdf', create=True) >>> v = f.new('Var', data=[1, 2, 3]) >>> spacepy.pycdf.istp.VariableChecks.all(v) ['No FIELDNAM attribute.'] """ callme = [func for name, func in inspect.getmembers(cls) if not name.startswith('_') and not name.endswith('_') and callable(func) and name != 'all'] errors = [] for f in callme: try: errors.extend(f(v)) except: if catch: errors.append('Test {} did not complete.'.format( f.__name__)) else: raise return errors
[docs] @classmethod def depends(cls, v): """Checks that DELTA, DEPEND, and LABL_PTR variables exist Check that variables specified in the variable attributes for `DELTA <https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DELTA>`_, `DEPEND <https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DEPEND_0>`_, and `LABL_PTR <https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#LABL_PTR_1>`_ exist in the CDF. Parameters ---------- v : `~.pycdf.Var` Variable to check Returns ------- list of str Description of each validation failure. """ return ['{} variable {} missing.'.format(a, v.attrs[a]) for a in v.attrs if (a.startswith(('DEPEND_', 'LABL_PTR_',)) or a in ('DELTA_PLUS_VAR', 'DELTA_MINUS_VAR')) and not v.attrs[a] in v.cdf_file]
[docs] @classmethod def deltas(cls, v): """Check DELTA variables Check that variables specified in the variable attributes for `DELTA <https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DELTA>`_ match the type, size, and units of this variable. Parameters ---------- v : `~.pycdf.Var` Variable to check Returns ------- list of str Description of each validation failure. """ errs = [] if v.rv(): shape = v.shape[1:] n_recs = len(v) else: shape = v.shape n_recs = None for delta in ('DELTA_PLUS_VAR', 'DELTA_MINUS_VAR'): if not delta in v.attrs: continue deltavar = v.cdf_file[v.attrs[delta]] if deltavar.type() != v.type(): errs.append( '{} type {} does not match variable type {}.'.format( delta, spacepy.pycdf.lib.cdftypenames[deltavar.type()], spacepy.pycdf.lib.cdftypenames[v.type()])) if deltavar.attrs.get('UNITS', None) != v.attrs.get('UNITS', None): errs.append('{} units do not match variable units.'.format( delta)) if deltavar.rv(): dshape = deltavar.shape[1:] d_n_recs = len(deltavar) else: dshape = deltavar.shape d_n_recs = None if dshape != shape: errs.append( '{} shape {} does not match variable shape {}.'.format( delta, dshape, shape)) if d_n_recs is not None and n_recs is not None \ and d_n_recs != n_recs: errs.append(( '{} record count {} does not match variable record' ' count {}.').format( delta, d_n_recs, n_recs)) return errs
[docs] @classmethod def depsize(cls, v): """Checks that DEPEND has same shape as that dim Compares the size of variables specified in the variable attributes for `DEPEND <https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DEPEND_0>`_ and compares to the size of the corresponding dimension in this variable. Parameters ---------- v : `~.pycdf.Var` Variable to check Returns ------- list of str Description of each validation failure. """ rv = int(v.rv()) #RV is a leading dimension errs = [] # Check that don't have invalid DEPEND_1 if v.shape == (0,): if 'DEPEND_1' in v.attrs or 'DEPEND_2' in v.attrs: errs.append('Do not expect DEPEND_1 or DEPEND_2 in 1 dimensional variable.') for i in range(rv, len(v.shape)): #This is index on shape (of var) depidx = i + 1 - rv #This is x in DEPEND_x target = v.shape[i] if not 'DEPEND_{}'.format(depidx) in v.attrs: continue d = v.attrs['DEPEND_{}'.format(depidx)] if d in v.cdf_file: dv = v.cdf_file[d] else: continue #this is a different error if dv.rv() != ('DEPEND_0' in dv.attrs): errs.append('DEPEND_{} {} is RV but has no DEPEND_0.' .format(depidx, d)) continue #We hope the only weirdness is whether the dependency #is constant, or dependent on record. If it's dependent #on another dependency, this gets really weird really fast # If the dependency is dependent, remove the lower level # dependency size from consideration # eg. if counts [80,48], depends on energy [80,48], # depends on look [80], remove 80 from the view of energy # so that we accurately check 48==48. # NB: This assumes max of two layers of dependency if 'DEPEND_2' in dv.attrs: errs.append('Do not expect three layers of dependency.') continue elif 'DEPEND_1' in dv.attrs: dd = dv.attrs['DEPEND_1'] if dd in v.cdf_file: ddv = v.cdf_file[dd] else: continue #this is a different error actual = list(dv.shape) for ii in actual: if ii in ddv.shape: actual.remove(ii) if 'DEPEND_0' in dv.attrs: # record varying dd = dv.attrs['DEPEND_0'] if dd[:5] != 'Epoch': errs.append('Expect DEPEND_0 to be Epoch.') continue if dd in v.cdf_file: ddv = v.cdf_file[dd] else: continue #this is a different error for ii in actual: if ii in ddv.shape: actual.remove(ii) if len(actual) != 1: errs.append('More complicated double dependency than taken into account.') continue else: actual = actual[0] else: actual = dv.shape[int(dv.rv())] if target != actual: errs.append('Dim {} sized {} but DEPEND_{} {} sized {}.'.format( i, target, depidx, d, actual)) return errs
[docs] @classmethod def empty_entry(cls, v): """Check for attributes with empty string Checks attributes for this variable for any entries consisting of an empty string. These should be replaced with a single space. Parameters ---------- v : `~.pycdf.Var` Variable to check Returns ------- list of str Description of each validation failure. """ errs = [] for a in v.attrs: if v.attrs.type(a) in (spacepy.pycdf.const.CDF_CHAR.value, spacepy.pycdf.const.CDF_UCHAR.value) \ and v.attrs[a] == '': errs.append('Empty CHAR entry for attribute {}.'.format(a)) return errs
[docs] @classmethod def fillval(cls, v): """Check for FILLVAL presence, type, value Checks variable for existence of `FILLVAL <https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#FILLVAL>`_ attribute and makes sure it is the same type as variable and matches ISTP value. Parameters ---------- v : `~.pycdf.Var` Variable to check Returns ------- list of str Description of each validation failure. See Also -------- spacepy.pycdf.istp.fillval : Automatic setting of this value. """ errs = [] if not 'FILLVAL' in v.attrs: return ['No FILLVAL attribute.'] if v.attrs.type('FILLVAL') != v.type(): errs.append( 'FILLVAL type {} does not match variable type {}.'.format( spacepy.pycdf.lib.cdftypenames[v.attrs.type('FILLVAL')], spacepy.pycdf.lib.cdftypenames[v.type()])) expected = fillval(v, ret=True) timetype = v.type() in spacepy.pycdf.lib.timetypes actual = (v.cdf_file.raw_var(v.name()) if timetype else v)\ .attrs['FILLVAL'] match = numpy.isclose( actual, expected, atol=0, rtol=1e-7)\ if numpy.issubdtype(v.dtype, numpy.floating)\ else numpy.all(actual == expected) if not match: if timetype: if v.type() == spacepy.pycdf.const.CDF_EPOCH16.value: converted_expected = spacepy.pycdf.lib.v_epoch16_to_datetime( numpy.asanyarray(expected)) else: converted_expected = { spacepy.pycdf.const.CDF_EPOCH.value: spacepy.pycdf.lib.v_epoch_to_datetime, spacepy.pycdf.const.CDF_TIME_TT2000.value: spacepy.pycdf.lib.v_tt2000_to_datetime }[v.type()](expected) errs.append( 'FILLVAL {} ({}), should be {} ({}) for variable type {}.' .format( actual, v.attrs['FILLVAL'], expected, converted_expected, spacepy.pycdf.lib.cdftypenames[v.type()])) else: errs.append( 'FILLVAL {}, should be {} for variable type {}.'.format( actual, expected, spacepy.pycdf.lib.cdftypenames[v.type()])) return errs
[docs] @classmethod def recordcount(cls, v): """Check that the DEPEND_0 has same record count as variable Checks the record count of the variable specified in the variable attribute for `DEPEND_0 <https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DEPEND_0>`_ and compares to the record count for this variable. Parameters ---------- v : `~.pycdf.Var` Variable to check Returns ------- list of str Description of each validation failure. """ if not v.rv() or not 'DEPEND_0' in v.attrs: return [] dep0 = v.attrs['DEPEND_0'] if not dep0 in v.cdf_file: #This is a DIFFERENT error return [] if len(v) != len(v.cdf_file[dep0]): return ['{} records; DEPEND_0 {} has {}.'.format( len(v), dep0, len(v.cdf_file[dep0]))] return []
@classmethod def _validhelper(cls, v, rng=True): """Helper function for checking SCALEMIN/MAX, VALIDMIN/MAX Parameters ---------- v : `~.pycdf.Var` Variable to check rng : bool Do range check (True, default) or scale check (False) Returns ------- list of str Description of each validation failure. """ validscale = 'VALID' if rng else 'SCALE' whichmin, whichmax = ('VALIDMIN', 'VALIDMAX') if rng \ else ('SCALEMIN', 'SCALEMAX') errs = [] vshape = v.shape minval, maxval = spacepy.pycdf.lib.get_minmax(v.type()) if rng: data = v[...] is_fill = False if 'FILLVAL' in v.attrs: filldtype = spacepy.pycdf.lib.numpytypedict.get( v.attrs.type('FILLVAL'), object) if numpy.issubdtype(v.dtype, numpy.floating) \ and numpy.issubdtype(filldtype, numpy.floating): is_fill = numpy.isclose(data, v.attrs['FILLVAL']) elif numpy.can_cast(numpy.asanyarray(v.attrs['FILLVAL']), v.dtype): is_fill = data == v.attrs['FILLVAL'] for which in (whichmin, whichmax): if not which in v.attrs: continue atype = v.attrs.type(which) vtype = v.type() if atype != vtype: errs.append( '{} type {} does not match variable type {}.'.format( which, spacepy.pycdf.lib.cdftypenames[atype], spacepy.pycdf.lib.cdftypenames[vtype])) attrval = v.attrs[which] multidim = bool(numpy.shape(attrval)) #multi-dimensional if multidim: #Compare shapes, require only 1D var #Match attribute dim to first non-record var dim firstdim = int(v.rv()) if vshape[firstdim] != numpy.shape(attrval)[0]: errs.append(('{} element count {} does not match first data' ' dimension size {}.').format( which, numpy.shape(attrval)[0], v.shape[firstdim])) continue if len(vshape) != firstdim + 1: #only one non-record dim errs.append('Multi-element {} only valid with 1D variable.' .format(which)) continue if firstdim: #Add pseudo-record dim attrval = numpy.reshape(attrval, (1, -1)) # min, max, variable data all same dtype if not numpy.can_cast(numpy.asanyarray(attrval), numpy.asanyarray(minval).dtype) or \ (atype in spacepy.pycdf.lib.timetypes) != (vtype in spacepy.pycdf.lib.timetypes): errs.append( '{} type {} not comparable to variable type {}.'.format( which, spacepy.pycdf.lib.cdftypenames[atype], spacepy.pycdf.lib.cdftypenames[vtype] )) continue # Cannot do comparisons if numpy.any((minval > attrval)) or numpy.any((maxval < attrval)): errs.append('{} ({}) outside valid data range ({},{}).'.format( which, attrval[0, :] if multidim else attrval, minval, maxval)) if not rng or not len(v): #nothing to compare continue #Always put numpy array on the left so knows to do element compare idx = (data < attrval) if which == whichmin \ else (data > attrval) idx = numpy.logical_and(idx, numpy.logical_not(is_fill)) if idx.any(): direction = 'under' if which == whichmin else 'over' if len(vshape) == 0: #Scalar errs.append('Value {} {} {} {}.'.format( data, direction, which, attrval[0, :] if multidim else attrval)) continue badidx = numpy.nonzero(idx) badvals = data[badidx] if len(badidx) > 1: #Multi-dimensional data badidx = numpy.transpose(badidx) #Group by value not axis else: badidx = badidx[0] #Just recover the index value if len(badvals) < 10: badvalstr = ', '.join(str(d) for d in badvals) badidxstr = ', '.join(str(d) for d in badidx) errs.append('Value {} at index {} {} {} {}.'.format( badvalstr, badidxstr, direction, which, attrval[0, :] if multidim else attrval)) else: errs.append('{} values {} {} {}'.format( len(badvals), direction, which, attrval[0, :] if multidim else attrval)) if (whichmin in v.attrs) and (whichmax in v.attrs): if numpy.any(v.attrs[whichmin] > v.attrs[whichmax]): errs.append('{} > {}.'.format(whichmin, whichmax)) return errs
[docs] @classmethod def validrange(cls, v): """Check that all values are within VALIDMIN/VALIDMAX, or FILLVAL Compare all values of this variable to `VALIDMIN <https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#VALIDMIN>`_ and ``VALIDMAX``; fails validation if any values are below VALIDMIN or above ``VALIDMAX`` unless equal to `FILLVAL <https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#FILLVAL>`_. Parameters ---------- v : `~.pycdf.Var` Variable to check Returns ------- list of str Description of each validation failure. """ return cls._validhelper(v)
[docs] @classmethod def validscale(cls, v): """Check SCALEMIN<=SCALEMAX, and both in range for CDF datatype. Compares `SCALEMIN <https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#SCALEMIN>`_ to ``SCALEMAX`` to make sure it isn't larger and both are within range of the variable CDF datatype. Parameters ---------- v : `~.pycdf.Var` Variable to check Returns ------- list of str Description of each validation failure. """ return cls._validhelper(v, False)
[docs] @classmethod def validdisplaytype(cls, v): """Check that plottype matches dimensions. Check `DISPLAYTYPE <https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#DISPLAY_TYPE>`_ of this variable and makes sure it is reasonable for the variable dimensions. Parameters ---------- v : `~.pycdf.Var` Variable to check Returns ------- list of str Description of each validation failure. """ time_st = 'time_series' spec_st = 'spectrogram' errs = [] if 'DISPLAY_TYPE' in v.attrs: if (len(v.shape) == 1) and (v.attrs['DISPLAY_TYPE'] != time_st): errs.append('1 dim variable with {} display type.'.format( v.attrs['DISPLAY_TYPE'])) elif (len(v.shape) > 1) and (v.attrs['DISPLAY_TYPE'] != spec_st): errs.append('Multi dim variable with {} display type.'.format( v.attrs['DISPLAY_TYPE'])) return errs
[docs] @classmethod def fieldnam(cls, v): """Check that FIELDNAM attribute matches variable name. Compare `FIELDNAM <https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#FIELDNAM>`_ attribute to the variable name; fail validation if they don't match. Parameters ---------- v : `~.pycdf.Var` Variable to check Returns ------- list of str Description of each validation failure. """ errs = [] vname = v.name() if 'FIELDNAM' not in v.attrs: errs.append('No FIELDNAM attribute.') elif v.attrs['FIELDNAM'] != vname: errs.append('FIELDNAM attribute {} does not match var name.' .format(v.attrs['FIELDNAM'])) return errs
[docs] class FileChecks(object): """ISTP compliance checks for a CDF file. Checks a file's compliance with ISTP standards. This mostly performs checks that are not currently performed by the `ISTP skeleton editor <https://spdf.gsfc.nasa.gov/skteditor/>`_. All tests return a list, one error string for every noncompliance found (empty list if compliant). `all` will perform all tests and concatenate all errors. """ #When adding new tests, add to list above. #Validation failures should be formatted as a sentence (initial cap, #closing period).
[docs] @classmethod def all(cls, f, catch=False): """Perform all variable and file-level tests In addition to calling every test in this class, will also call `VariableChecks.all` for every variable in the file. Parameters ---------- f : `~.pycdf.CDF` Open CDF file to check catch : bool Catch exceptions in tests (default False). If True, any exceptions in subtests will result in an addition to the validation failures of the form "Test x did not complete." Calling the individual test will reveal the full traceback. Returns ------- list of str Description of each validation failure. Examples -------- >>> import spacepy.pycdf >>> import spacepy.pycdf.istp >>> f = spacepy.pycdf.CDF('foo.cdf', create=True) >>> v = f.new('Var', data=[1, 2, 3]) >>> spacepy.pycdf.istp.FileChecks.all(f) ['No Logical_source in global attrs.', 'No Logical_file_id in global attrs.', 'Cannot parse date from filename foo.cdf.', 'Var: No FIELDNAM attribute.'] """ #Update this list when adding new test functions callme = [func for name, func in inspect.getmembers(cls) if not name.startswith('_') and not name.endswith('_') and callable(func) and name != 'all'] errors = [] for func in callme: try: errors.extend(func(f)) except: if catch: errors.append('Test {} did not complete.'.format( func.__name__)) else: raise for v in f: errors.extend(('{}: {}'.format(v, e) for e in VariableChecks.all(f[v], catch=catch))) return errors
[docs] @classmethod def empty_entry(cls, f): """Check for attributes with empty string Checks global attributes for this variable for any entries consisting of an empty string. These should be replaced with a single space. Parameters ---------- f : `~.pycdf.CDF` Open CDF file to check Returns ------- list of str Description of each validation failure. """ errs = [] for a in f.attrs: attr = f.attrs[a] for i in range(attr.max_idx() + 1): if attr.has_entry(i) \ and attr.type(i) in (spacepy.pycdf.const.CDF_CHAR.value, spacepy.pycdf.const.CDF_UCHAR.value) \ and attr[i] == '': errs.append('Empty CHAR entry {} for attribute {}.' .format(i, a)) return errs
[docs] @classmethod def filename(cls, f): """Compare filename to global attributes Check global attribute `Logical_file_id <https://spdf.gsfc.nasa.gov/istp_guide/gattributes.html#Logical_file_id>`_ and `Logical_source <https://spdf.gsfc.nasa.gov/istp_guide/gattributes.html#Logical_source>`_ for consistency with CDF filename. Parameters ---------- f : `~.pycdf.CDF` Open CDF file to check Returns ------- list of str Description of each validation failure. """ errs = [] for a in ('Logical_source', 'Logical_file_id'): if not a in f.attrs or len(f.attrs[a]) == 0: errs.append('No {} in global attrs.'.format(a)) if errs: return errs fname = os.path.basename(f.pathname) fname = fname.decode('ascii') if not fname.startswith(f.attrs['Logical_source'][0]): errs.append("Logical_source {} doesn't match filename {}.".format( f.attrs['Logical_source'][0], fname)) if fname[:-4] != f.attrs['Logical_file_id'][0]: errs.append("Logical_file_id {} doesn't match filename {}.".format( f.attrs['Logical_file_id'][0], fname)) return errs
[docs] @classmethod def time_monoton(cls, f): """Checks that times are monotonic Check that all `Epoch <https://spdf.gsfc.nasa.gov/istp_guide/variables.html#support_data_eg1>`_ variables are monotonically increasing. Parameters ---------- f : `~.pycdf.CDF` Open CDF file to check Returns ------- list of str Description of each validation failure. """ errs = [] for v in f: if not f[v].type() in (spacepy.pycdf.const.CDF_EPOCH.value, spacepy.pycdf.const.CDF_EPOCH16.value, spacepy.pycdf.const.CDF_TIME_TT2000.value): continue data = f[v][...] idx = numpy.where(numpy.diff(data) < datetime.timedelta(0))[0] if not any(idx): continue errs.append('{}: Nonmonotonic time at record {}.'.format( v, ', '.join((str(i) for i in (idx + 1))))) return errs
[docs] @classmethod def times(cls, f): """Compare filename to times Check that all `Epoch <https://spdf.gsfc.nasa.gov/istp_guide/variables.html#support_data_eg1>`_ variables only contain times matching filename. Parameters ---------- f : `~.pycdf.CDF` Open CDF file to check Returns ------- list of str Description of each validation failure. Notes ----- This function assumes daily files and should be extended based on the File_naming_convention global attribute (which itself is another good check to have.) """ errs = [] fname = os.path.basename(f.pathname) fname = fname.decode('ascii') m = re.search(r'\d{8}', fname) if not m: return ['Cannot parse date from filename {}'.format(fname)] datestr = m.group(0) for v in f: if f[v].type() in (spacepy.pycdf.const.CDF_EPOCH.value, spacepy.pycdf.const.CDF_EPOCH16.value, spacepy.pycdf.const.CDF_TIME_TT2000.value): datestrs = list(set((d.strftime('%Y%m%d') for d in f[v][...]))) if len(datestrs) == 0: continue elif len(datestrs) > 1: errs.append('{}: multiple days {}.'.format( v, ', '.join(sorted(datestrs)))) elif datestrs[0] != datestr: errs.append('{}: date {} doesn\'t match file {}.'.format( v, datestrs[0], fname)) return errs
[docs] def fillval(v, ret=False): """Set ISTP-compliant FILLVAL on a variable Sets or returns a CDF variable's `FILLVAL <https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#FILLVAL>`_ attribute to the value required by ISTP (based on variable type). Parameters ---------- v : `~.pycdf.Var` CDF variable to update Other Parameters ---------------- ret : boolean If True, return the value instead of setting it (Default False, set). Returns ------- various If ``ret`` is True, returns the correct value for variable type (which may be of various Python types). Otherwise sets the value and returns ``None``. Examples -------- >>> import spacepy.pycdf >>> import spacepy.pycdf.istp >>> f = spacepy.pycdf.CDF('foo.cdf', create=True) >>> v = f.new('Var', data=[1, 2, 3]) >>> spacepy.pycdf.istp.fillval(v) >>> v.attrs['FILLVAL'] -128 """ #Fill value, indexed by the CDF type (numeric) fillvals = {} #Integers for i in (1, 2, 4, 8): fillvals[getattr(spacepy.pycdf.const, 'CDF_INT{}'.format(i)).value] = \ - 2 ** (8*i - 1) if i == 8: continue fillvals[getattr(spacepy.pycdf.const, 'CDF_UINT{}'.format(i)).value] = \ 2 ** (8*i) - 1 fillvals[spacepy.pycdf.const.CDF_EPOCH16.value] = (-1e31, -1e31) fillvals[spacepy.pycdf.const.CDF_REAL8.value] = -1e31 fillvals[spacepy.pycdf.const.CDF_REAL4.value] = -1e31 fillvals[spacepy.pycdf.const.CDF_CHAR.value] = ' ' fillvals[spacepy.pycdf.const.CDF_UCHAR.value] = ' ' #Equivalent pairs for cdf_t, equiv in ( (spacepy.pycdf.const.CDF_TIME_TT2000, spacepy.pycdf.const.CDF_INT8), (spacepy.pycdf.const.CDF_EPOCH, spacepy.pycdf.const.CDF_REAL8), (spacepy.pycdf.const.CDF_BYTE, spacepy.pycdf.const.CDF_INT1), (spacepy.pycdf.const.CDF_FLOAT, spacepy.pycdf.const.CDF_REAL4), (spacepy.pycdf.const.CDF_DOUBLE, spacepy.pycdf.const.CDF_REAL8), ): fillvals[cdf_t.value] = fillvals[equiv.value] value = fillvals[v.type()] if ret: return value if 'FILLVAL' in v.attrs: del v.attrs['FILLVAL'] v.attrs.new('FILLVAL', data=value, type=v.type())
[docs] def format(v, use_scaleminmax=False, dryrun=False): """Set ISTP-compliant FORMAT on a variable Sets a CDF variable's `FORMAT <https://spdf.gsfc.nasa.gov/istp_guide/vattributes.html#FORMAT>`_ attribute, which provides a Fortran-like format string that should be useable for printing any valid value in the variable. Sets according to the VALIDMIN/VALIDMAX attributes (or, optionally, SCALEMIN/SCALEMAX) if present, otherwise uses the full range of the type. Parameters ---------- v : `~.pycdf.Var` Variable to update use_scaleminmax : bool, optional Use SCALEMIN/MAX instead of VALIDMIN/MAX (default False). Note: istpchecks may complain about result. dryrun : bool, optional Print the decided format to stdout instead of modifying the CDF (for use in command-line debugging) (default False). Examples -------- >>> import spacepy.pycdf >>> import spacepy.pycdf.istp >>> f = spacepy.pycdf.CDF('foo.cdf', create=True) >>> v = f.new('Var', data=[1, 2, 3]) >>> spacepy.pycdf.istp.format(v) >>> v.attrs['FORMAT'] 'I4' """ if use_scaleminmax: minn = 'SCALEMIN' maxx = 'SCALEMAX' else: minn = 'VALIDMIN' maxx = 'VALIDMAX' cdftype = v.type() if cdftype in (spacepy.pycdf.const.CDF_INT1.value, spacepy.pycdf.const.CDF_INT2.value, spacepy.pycdf.const.CDF_INT4.value, spacepy.pycdf.const.CDF_INT8.value, spacepy.pycdf.const.CDF_UINT1.value, spacepy.pycdf.const.CDF_UINT2.value, spacepy.pycdf.const.CDF_UINT4.value, spacepy.pycdf.const.CDF_BYTE.value): if minn in v.attrs: #Just use validmin or scalemin minval = v.attrs[minn] elif cdftype in (spacepy.pycdf.const.CDF_UINT1.value, spacepy.pycdf.const.CDF_UINT2.value, spacepy.pycdf.const.CDF_UINT4.value): #unsigned, easy minval = 0 elif cdftype == spacepy.pycdf.const.CDF_BYTE.value: minval = - 2 ** 7 else: #Signed, harder size = next((i for i in (1, 2, 4, 8) if getattr( spacepy.pycdf.const, 'CDF_INT{}'.format(i)).value == cdftype)) minval = - 2 ** (8*size - 1) if maxx in v.attrs: #Just use max maxval = v.attrs[maxx] elif cdftype == spacepy.pycdf.const.CDF_BYTE.value: maxval = 2 ** 7 - 1 else: size = next((8 * i for i in (1, 2, 4) if getattr( spacepy.pycdf.const, 'CDF_UINT{}'.format(i)).value == cdftype), None) if size is None: size = next((8 * i for i in (1, 2, 4, 8) if getattr( spacepy.pycdf.const, 'CDF_INT{}'.format(i)).value == cdftype)) - 1 maxval = 2 ** size - 1 #Two tricks: #-Truncate and add 1 rather than ceil so get #powers of 10 (log10(10) = 1 but needs two digits) #-Make sure not taking log of zero if minval < 0: #Need an extra space for the negative sign fmt = 'I{}'.format(int(math.log10(max( abs(maxval), abs(minval), 1))) + 2) else: fmt = 'I{}'.format(int( math.log10(maxval) if maxval != 0 else 1) + 1) elif cdftype == spacepy.pycdf.const.CDF_TIME_TT2000.value: fmt = 'A{}'.format(len('9999-12-31T23:59:59.999999999')) elif cdftype == spacepy.pycdf.const.CDF_EPOCH16.value: fmt = 'A{}'.format(len('31-Dec-9999 23:59:59.999.999.000.000')) elif cdftype == spacepy.pycdf.const.CDF_EPOCH.value: fmt = 'A{}'.format(len('31-Dec-9999 23:59:59.999')) elif cdftype in (spacepy.pycdf.const.CDF_REAL8.value, spacepy.pycdf.const.CDF_REAL4.value, spacepy.pycdf.const.CDF_FLOAT.value, spacepy.pycdf.const.CDF_DOUBLE.value): # Prioritize SCALEMIN/MAX to find the number of decimals to include if 'SCALEMIN' in v.attrs and 'SCALEMAX' in v.attrs: range = v.attrs['SCALEMAX'] - v.attrs['SCALEMIN'] # If not, use VALIDMIN/MAX elif 'VALIDMIN' in v.attrs and 'VALIDMAX' in v.attrs: range = v.attrs['VALIDMAX'] - v.attrs['VALIDMIN'] # If not, just use nothing. else: range = None # Find how many spaces we need for the 'integer' part of the number # (Use maxx-minn for this...effectively uses VALIDMIN/MAX for most # cases.) if range and (minn in v.attrs and maxx in v.attrs): if len(str(int(v.attrs[maxx]))) >=\ len(str(int(v.attrs[minn]))): ln = str(int(v.attrs[maxx])) else: ln = str(int(v.attrs[minn])) if range and ln and range < 0: # Cover all our bases: # raise ValueError('Range ({} - {}) cannot be negative:' # '\nVarname: {}\nRange: {}'.format(maxx, minn, v, range)) ### Instead of throwing an error, just use None # There are old cases that for some reason have negative ranges, so # this is really more of a compatibility choice than a good # decision. range = None # All of the lengths below (the +4, +3, +2, etc...) should be EXACTLY # enough. Consider adding 1, (4+1=5, 3+1=4, etc...) to possibly make # this easier. # elif range and ln and range <= 11: # If range <= 11, we want 2 decimal places: if range and ln and range <= 11: # If range <= 11, we want 2 decimal places: # Need extra for '.', and 3 decimal places (4 extra) fmt = 'F{}.3'.format(len([i for i in ln]) + 4) elif range and ln and 11 < range <= 101: # Need extra for '.' (1 extra) fmt = 'F{}.2'.format(len([i for i in ln]) + 3) elif range and ln and 101 < range <= 1000: # Need extra for '.' (1 extra) fmt = 'F{}.1'.format(len([i for i in ln]) + 2) else: # No range, must not be populated, copied from REAL4/8(s) above # OR we don't care because it's a 'big' number: fmt = 'G10.2E3' elif cdftype in (spacepy.pycdf.const.CDF_CHAR.value, spacepy.pycdf.const.CDF_UCHAR.value): fmt = 'A{}'.format(v.nelems()) else: raise ValueError("Couldn't find FORMAT for {} of type {}".format( v.name(), spacepy.pycdf.lib.cdftypenames.get(cdftype, 'UNKNOWN'))) if dryrun: print(fmt) else: if 'FORMAT' in v.attrs: del v.attrs['FORMAT'] v.attrs.new('FORMAT', data=fmt, type=spacepy.pycdf.const.CDF_CHAR)
[docs] def nanfill(v): """Set fill values to NaN Finds all values which are equal to ``FILLVAL``, greater than ``VALIDMAX``, or less than ``VALIDMIN``, and replace with ``NaN`` (not-a-number). This is an update-in-place operation; does not return a copy. Assumes a single value for ``VALIDMIN``, ``VALIDMAX``, ``FILLVAL`` (although if the attribute is not present, will simply assume no restriction.) Only applicable to floating-point types. Best applied to a `~.pycdf.VarCopy` or `~.datamodel.dmarray` rather than `~.pycdf.Var`. Updating a variable in a CDF requires one write per changed value, and also will result in a CDF that is no longer ISTP compliant. Because of floating-point comparison, the matching to ``FILLVAL`` may fail. Parameters ---------- v : `~.pycdf.Var` or `~.datamodel.dmarray` CDF variable, data, or copy to update Examples -------- >>> import spacepy.pycdf >>> import spacepy.pycdf.istp >>> f = spacepy.pycdf.CDF('foo.cdf', create=True) >>> v = f.new('Var', data=[1, 2, 3, -1e31]) >>> spacepy.pycdf.istp.fillval(v) >>> data = v.copy() >>> data VarCopy([1., 2., 3., -1.e31], dtype=float32) >>> spacepy.pycdf.istp.nanfill(data) >>> data VarCopy([1., 2., 3., nan], dtype=float32) """ #If input is a zVar, read all the data; if not, this is a no-copy operation indata = v[...] badidx = numpy.zeros(shape=v.shape, dtype=bool) if 'FILLVAL' in v.attrs: badidx |= (indata == v.attrs['FILLVAL'][...]) if 'VALIDMIN' in v.attrs: badidx |= (indata < v.attrs['VALIDMIN'][...]) if 'VALIDMAX' in v.attrs: badidx |= (indata > v.attrs['VALIDMAX'][...]) #Try a simple assignment with fancy indexing try: v[badidx] = numpy.nan except (IndexError, ValueError): pass else: return #success #Fancy indexing failed, do element-by-element assignment badidx = numpy.transpose(badidx.nonzero()) for i in badidx: v[tuple(i)] = numpy.nan
[docs] class VarBundle(object): """Collective handling of ISTP-compliant variable and its dependencies. Representation of an ISTP-compliant variable bundled together with its dependencies to enable aggregate operations. Normally used to copy a subset of data from one CDF or SpaceData to another by chaining operations, or to load just the relevant data from a CDF into a `~.datamodel.SpaceData`. ``VarBundle`` operates on a single variable within a file or SpaceData and its various dependencies, uncertainties, labels, etc. That variable can be specified one of two ways. An open CDF file or SpaceData can be passed as the first parameter, and the name of a variable within it as the second parameter. Or, for CDF files, a :class:`~.pycdf.Var` can be passed as the only parameter, implicitly defining the input file (the CDF containing that variable). Unusual or indecipherable error messages may indicate an ISTP compliance issue; see `VariableChecks` for some checks. Parameters ---------- source : `~.pycdf.CDF`, `~.datamodel.SpaceData`, or `~.pycdf.Var` SpaceData or open CDF containing the variable to process, or the CDF variable itself. name : `str` Name of the variable within ``source`` to process ("main variable"). See Also -------- .datamodel.fromCDF .pycdf.CDF.copy Notes ----- If using :class:`~.datamodel.SpaceData` input, the contents are assumed to be `ISTP compliant <https://spdf.gsfc.nasa.gov/sp_use_of_cdf.html>`_. In particular, the following attributes of the enclosed :class:`~.datamodel.dmarray` are used (*italics* denotes required): * *DEPEND_0*, *DEPEND_1*, etc. * LABL_PTR_0, LABL_PTR_1, etc. * DELTA_PLUS_VAR, DELTA_MINUS_VAR * VALIDMIN, VALIDMAX, *FILLVAL* Examples -------- >>> import spacepy.pycdf >>> import spacepy.pycdf.istp >>> #https://rbsp-ect.newmexicoconsortium.org/data_pub/rbspa/hope/level3/pitchangle/2012/ >>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf') >>> infile['FPDU'] <Var: CDF_FLOAT [3228, 11, 72] > >>> infile['FPDU'].attrs <zAttrList: CATDESC: HOPE differential proton flux [CDF_CHAR] DEPEND_0: Epoch_Ion [CDF_CHAR] DEPEND_1: PITCH_ANGLE [CDF_CHAR] DEPEND_2: HOPE_ENERGY_Ion [CDF_CHAR] ... > >>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU']) >>> b = spacepy.pycdf.istp.VarBundle(infile, 'FPDU') # Equivalent >>> outfile = spacepy.pycdf.CDF('output.cdf', create=True) >>> b.slice(1, 2, single=True).output(outfile) <VarBundle: FPDU: CDF_FLOAT [3228, 72] Epoch_Ion: CDF_EPOCH [3228] Epoch_Ion_DELTA: CDF_REAL4 [3228] PITCH_ANGLE: CDF_FLOAT --- Pitch_LABL: CDF_CHAR*5 --- HOPE_ENERGY_Ion: CDF_FLOAT [3228, 72] ENERGY_Ion_DELTA: CDF_FLOAT [3228, 72] Energy_LABL: CDF_CHAR*3 [72] NRV > >>> outfile['FPDU'] <Var: CDF_FLOAT [3228, 72] > >>> outfile['FPDU'].attrs <zAttrList: CATDESC: HOPE differential proton flux [CDF_CHAR] DEPEND_0: Epoch_Ion [CDF_CHAR] DEPEND_1: HOPE_ENERGY_Ion [CDF_CHAR] ... > >>> outfile.close() >>> infile.close() """
[docs] def __init__(self, source, name=None): """Initialize variable bundle Parameters ---------- source : `~spacepy.pycdf.CDF` or `~spacepy.pycdf.Var` CDF containing the variable to process, or the variable itself. name : `str` Name of the variable within ``source`` to process ("main variable"). """ if name is None and not hasattr(source, 'cdf_file'): raise TypeError('Single-argument form must be a variable' ' in an open CDF, not {}.'.format(type(source).__name__)) self.mainvar = source if name is None else source[name] """The variable to operate on.""" self.cdf = self.mainvar.cdf_file if name is None else source """Input CDF file containing the main variable.""" self._name = self.mainvar.name() if name is None else name """Name of the main variable""" self._varinfo = {} """Keyed by variable name. Values are also dicts, keys are ``dims``, list of the main variable dimensions corresponding to each dimension of the variable, ``slice``, the slice to apply when reading this variable from the input, ``postidx``, a numpy fancy index to apply after reading, ``thisdim``, the main dimension for which this var is a dep (and thus it should be removed if the dim is removed), ``vartype``, whether this variable is the main var (M), a dependency (D), or DELTA of the main (U, for uncertainty), ``sortorder``, the order in which it should be displayed (0 for the main variable, 1 for dependencies, 2 for all DELTAs, and 3 for labels). """ self._degenerate = [] """Index by dim, is it degenerate, i.e. removed in a slice.""" self._summed = [] """Index by dim, is this dim summed.""" self._mean = [] """Index by dim, is this dim averaged.""" self._getvarinfo()
def _process_delta(self, mainname, deltaname): """Handle DELTA_PLUS/DELTA_MINUS attributes A DELTA variable should be the same shape and the same dependencies as its referrer (except potentially NRV). Parameters ---------- mainname : str Name of variable that references the DELTA, i.e. it has a DELTA_PLUS_VAR/DELTA_MINUS_VAR attribute that references ``deltaname``. deltaname : str Name of the DELTA variable itself. Returns ------- dict dims/slice information suitable for inclusion in ``_varinfo``. """ thisvar = self.cdf[deltaname] mainvar = self.cdf[mainname] for a in thisvar.attrs: #Check that all dependencies match if not a.startswith(('DEPEND_', 'LABL_PTR_')): continue if a in mainvar.attrs: if thisvar.attrs[a] != mainvar.attrs[a]: raise ValueError('{}: attribute {} mismatch with main var' .format(deltaname, a)) elif thisvar.attrs[a] != mainname: raise ValueError('{}: attribute {} not in main var' .format(deltaname, a)) rv = thisvar.rv() if hasattr(thisvar, 'rv')\ else 'DEPEND_0' in thisvar.attrs if rv and not self._varinfo[mainname]['rv']: raise ValueError( '{}: Cannot handle RV DELTA with NRV variable.' .format(deltaname)) thisshape = thisvar.shape mainshape = mainvar.shape if not rv and self._varinfo[mainname]['rv']: #Ignore record dim mainshape = mainshape[1:] if thisshape != mainshape: raise ValueError('{}: DELTA/main var shape mismatch.' .format(deltaname)) #If this is NRV and main is RV, that's okay, the R dim will #get removed when actually slicing. result = { k: self._varinfo[mainname][k][:] for k in ('dims', 'slice', 'postidx') } result.update({ 'dv': thisvar.dv() if hasattr(thisvar, 'dv')\ else [True] * (len(result['dims']) - 1), 'rv': rv, 'sortorder': 2, }) return result def _getvarinfo(self): """Find dependency and dimension information For main variable and its dependencies, find how dimensions relate to the main variable, and find all DELTA variables. """ rv = self.mainvar.rv() if hasattr(self.mainvar, 'rv')\ else 'DEPEND_0' in self.mainvar.attrs #Every dim maps back to itself for the main variable dims = list(range(len(self.mainvar.shape) + int(not rv))) self._degenerate = [False] * len(self.mainvar.shape) self._summed = [False] * len(self.mainvar.shape) self._mean = [False] * len(self.mainvar.shape) if not rv: #Fake the 0-dim self._degenerate.insert(0, False) self._summed.insert(0, False) self._mean.insert(0, False) #And every dimension is a full slice, to start self._varinfo[self._name] = { 'dims': dims, # Dim variance is CDF concept--if not specified, assume True 'dv': self.mainvar.dv() if hasattr(self.mainvar, 'dv')\ else [True] * (len(dims) - 1), 'slice': [slice(None)] * len(dims), 'postidx': [slice(None)] * len(dims), 'rv': rv, 'sortorder': 0, 'vartype': 'M', } mainattrs = self.mainvar.attrs #Get the attributes that matter in the MAIN var attrs = {a: mainattrs[a] for a in mainattrs if a.startswith(('DEPEND_', 'LABL_PTR')) or a in ('DELTA_PLUS_VAR', 'DELTA_MINUS_VAR')} for a in attrs: #Process DEPEND/LABL_PTR variables if not a.startswith(('DEPEND_', 'LABL_PTR_')): continue thisname = attrs[a] if thisname in self._varinfo: #Already handled if self._varinfo[thisname]['sortorder'] == 3 \ and a.startswith('DEPEND_'): #Processed before as a LABL, but also is a DEPEND. #Technically ISTP violation, but have the DEPEND take #priority self._varinfo[thisname]['sortorder'] = 1 continue thisvar = self.cdf[thisname] #Dimension of main var that corresponds to this var dim = int(a.split('_')[-1]) dims = [0,] #Record dim always matches rv = thisvar.rv() if hasattr(thisvar, 'rv')\ else 'DEPEND_0' in thisvar.attrs or a == 'DEPEND_0' #For every CDF (non-record) dim, match to the main variable for i in range(1, len(thisvar.shape) + int(not rv)): #DEPEND; LABL_PTR for this dimension dim_dep = 'DEPEND_{}'.format(i) labl_dep = 'LABL_PTR_{}'.format(i) if not dim_dep in thisvar.attrs: #No depend on this dim, so it's the dim that's represented #in this variable dims.append(dim) else: #Match to parent var dim_dep = thisvar.attrs[dim_dep] parentdim = next(( int(d.split('_')[-1]) for d in attrs if (d.startswith('DEPEND_') and attrs[d] == dim_dep) or (d.startswith('LABL_PTR_') and attrs[d] == labl_dep) ), None) if parentdim is None: raise ValueError('Cannot match dim {} of {}'.format( i, thisname)) dims.append(parentdim) if dims.count(dim) != 1: raise ValueError('Cannot find unique dimension for {}' .format(thisname)) self._varinfo[thisname] = { 'dims': dims, 'dv': thisvar.dv() if hasattr(thisvar, 'dv')\ else [True] * (len(dims) - 1), 'slice': [slice(None)] * len(dims), 'postidx': [slice(None)] * len(dims), 'rv': rv, 'sortorder': 1 if a.startswith('DEPEND_') else 3, 'thisdim': dim, 'vartype': 'D', } #Process DELTAs of the DEPENDs for d in ('DELTA_PLUS_VAR', 'DELTA_MINUS_VAR'): if d not in thisvar.attrs: continue deltaname = thisvar.attrs[d] if deltaname in self._varinfo: continue self._varinfo[deltaname] \ = self._process_delta(thisname, deltaname) self._varinfo[deltaname]['vartype'] = 'D' #just like other deps self._varinfo[deltaname]['thisdim'] = dim for a in ('DELTA_PLUS_VAR', 'DELTA_MINUS_VAR'): #Process DELTA vars if not a in attrs: continue thisname = attrs[a] if thisname not in self._varinfo: #If DELTA_PLUS/DELTA_MINUS are same var, skip second one self._varinfo[thisname] \ = self._process_delta(self._name, thisname) self._varinfo[thisname]['vartype'] = 'U'
[docs] def slice(self, dim, start=None, stop=None, step=None, single=False): """Slice on a single dimension Selects subset of a dimension to include in the output. Slicing is done with reference to the dimensions of the main variable and the corresponding dimensions of all other variables are sliced similarly. The first non-record dimension of the variable is always 1; 0 is the record dimension (and is ignored for NRV variables). Multiple slices can be applied to select subsets of multiple dimensions; however, if one dimension is indexed multiple times, only the last one in the chain takes effect. Interpretation of the slice parameters is like normal Python slicing, including the ability to use negative values, etc. Passing in only a dimension "resets" the slice to include the entire dimension. Parameters ---------- dim : int CDF dimension to slice on. This is the dimension as specified in the CDF (0-base for RV variables, 1-base for NRV) and does not change with successive slicing. Each dimension can only be sliced once. single : bool Treat ``start`` as a single index and return only that index (reducing dimensionality of the data by one.) start : int Index of first element of ``dim`` to include in the output. This can also be a sequence of indices to include, in which case ``stop`` and ``step`` must not be specified. This can be substantially slower than specifying ``stop`` and ``step``. stop : int Index of first element of ``dim`` to exclude from the output. step : int Increment between elements to include in the output. Returns ------- VarBundle This bundle, for method chaining. This is not a copy: the original object is updated. Examples -------- See the `VarBundle` examples for creating output from the slices. >>> import spacepy.pycdf >>> import spacepy.pycdf.istp >>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf') >>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU']) >>> #Select index 2 from axis 1 >>> b.slice(1, 2, single=True) >>> #Select from index 5 to end for axis 2, keeping index 2 from axis 1 >>> b.slice(2, 5) >>> #Select 10 through 15 on axis 2, but all of axis 1 >>> b.slice(1).slice(2, 10, 15) >>> #Select just record 5 and 10 >>> b.slice(2).slice(0, [5, 10]) >>> infile.close() """ if single and (self._summed[dim] or self._mean[dim]): raise ValueError('Cannot sum/average on a single-element slice.') self._degenerate[dim] = single fancyidx = (stop is None and step is None and numpy.ndim(start) != 0) sl = slice(None, None, None) if fancyidx else slice(start, stop, step) for v in self._varinfo.values(): if not dim in v['dims']: continue #This "main" var dimension isn't in this var idx = v['dims'].index(dim) #The slice to perform on read v['slice'][idx] = start if single else sl #And the slice to perform after the fact if fancyidx: v['postidx'][idx] = start return self
[docs] def sum(self, dim): """Sum across a dimension. Total the main variable of the bundle across the given dimension. That dimension disappears from the output and dependencies (including their uncertainties) are assumed to be constant across the summed dimension. The uncertainty of the main variable, if any, is appropriately propagated (quadrature sum.) An invalid value for any element summed over will result in a fill value on the output. This does not work well for variables that define multiple VALIDMIN/VALIDMAX based on position within a dimension; the smallest VALIDMIN/largest VALIDMAX rather than the position-specific value. Summing occurs after slicing, to allow summing of a subset of a dimension. A single element slice (which removes the dimension) is incompatible with summing over that dimension. There is not currently a way to "undo" a sum; create a new bundle instead. Parameters ---------- dim : int CDF dimension to total. This is the dimension as specified in the CDF (0-base for RV variables, 1-base for NRV) and does not change with successive slicing or summing. This must be a positive number (no support for e.g. -1 for last dimension.) Returns ------- VarBundle This bundle, for method chaining. This is not a copy: the original object is updated. Examples -------- See the `VarBundle` examples for creating output. >>> import spacepy.pycdf >>> import spacepy.pycdf.istp >>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf') >>> b = spacepy.pycdf.istp.VarBundle(infile['Counts_P']) >>> #Total over dimension 1 (pitch angle) >>> b.sum(1) >>> #Get a new bundle (without the previous sum) >>> b = spacepy.pycdf.istp.VarBundle(infile['Counts_P']) >>> #Total over first 10 elements of dimension 2 (energy bins) >>> b.slice(2, 0, 10).sum(2) >>> infile.close() """ if self._degenerate[dim]: raise ValueError('Cannot sum on a single-element slice.') if self._mean[dim]: raise ValueError('Cannot sum and take mean of same dimension.') self._summed[dim] = True return self
[docs] def mean(self, dim): """Take the mean of a dimension. Take mean of the main variable of the bundle across the given dimension. That dimension disappears from the output and dependencies (including their uncertainties) are assumed to be constant across the summed dimension. The uncertainty of the main variable, if any, is appropriately propagated. Invalid values are excluded fromthe mean. This does not work well for variables that define multiple VALIDMIN/VALIDMAX based on position within a dimension; the smallest VALIDMIN/largest VALIDMAX rather than the position-specific value. Averaging occurs after slicing, to allow averaging of a subset of a dimension. A single element slice (which removes the dimension) is incompatible with averaging over that dimension. There is not currently a way to "undo" a mean; create a new bundle instead. Parameters ---------- dim : int CDF dimension to average. This is the dimension as specified in the CDF (0-base for RV variables, 1-base for NRV) and does not change with successive slicing or summing. This must be a positive number (no support for e.g. -1 for last dimension.) Returns ------- VarBundle This bundle, for method chaining. This is not a copy: the original object is updated. Examples -------- See the `VarBundle` examples for creating output. >>> import spacepy.pycdf >>> import spacepy.pycdf.istp >>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf') >>> b = spacepy.pycdf.istp.VarBundle(infile['Counts_P']) >>> #Average over dimension 1 (pitch angle) >>> b.mean(1) >>> #Get a new bundle (without the previous sum) >>> b = spacepy.pycdf.istp.VarBundle(infile['Counts_P']) >>> #Average over first 10 elements of dimension 2 (energy bins) >>> b.slice(2, 0, 10).mean(2) >>> infile.close() """ if self._degenerate[dim]: raise ValueError('Cannot average on a single-element slice.') if self._summed[dim]: raise ValueError('Cannot sum and take mean of same dimension.') self._mean[dim] = True return self
def _tokeep(self): """Determine which variables to keep for output Dependencies for dimensions which disappear after slicing, and other variables that they depend on, shouldn't be included in the output Returns ------- list of str Names of variables to include in the output. """ #What dims of main var disappear? deleted = [i for i in range(len(self._degenerate)) if any((self._degenerate[i], self._summed[i], self._mean[i]))] return [v for v, i in self._varinfo.items() if i.get('thisdim', None) not in deleted] def _same(self, newvar, invar, rv, dv, dims, data): """Checks if an existing variable matches a proposed new variable Does not compare DEPEND and LABL_PTR attributes (those are handled later.) Parameters ---------- newvar : `~.pycdf.Var` Existing variable to compare to requirements invar : : class:`~.pycdf.Var` Variable to use as reference for attributes, RV, CDF type, number of elements. rv : bool Is the new variable record-varying dv : list of bool Data variance for each dimension. dims : list of int Size of each dimension. data : `~numpy.ndarray` Data that should be in the variable. Returns ------- bool True if the existing variable is the same; False if not. """ # CDF output only checks if hasattr(newvar, 'type'): if newvar.rv() != rv or newvar.dv() != dv: return False if hasattr(invar, 'type') and newvar.type() != invar.type(): return False if hasattr(invar, 'nelems') and newvar.nelems() != invar.nelems(): return False #Check basic type, dimensions, etc. if newvar.dtype != invar.dtype\ or len(dims) != (len(newvar.shape) - rv) \ or list(dims) != list(newvar.shape[rv:]): return False ia = invar.attrs na = newvar.attrs for a in ia: if a.startswith(('DEPEND_', 'LABL_PTR_')) \ or a == 'FIELDNAM': #depends/LABL PTR shift around, and FIELDNAM may change, #so test outside of this function. pass if not a in na or not numpy.array_equal(ia[a], na[a]): return False # CDF input *and* output only if hasattr(na, 'type') and hasattr(ia, 'type')\ and ia.type(a) != na.type(a): return False #Finally check the data return (data == newvar[...]).all() def _namemap(self, suffix=None): """Map old variable names to new Helper for `output` that maps the variable name in the input CDF to variable name in the output CDF. Parameters ---------- suffix : str String to append to name of variables that are changed from input to output. Returns ------- dict Keyed by name in input, values are name in the output. No entry for names that don't change. """ namemap = {} if suffix is not None: for vname, vinfo in self._varinfo.items(): if vinfo['vartype'] in ('M', 'U'): namemap[vname] = vname + suffix else: #Dependency. If any slice/sum, it's changed if any([any((self._summed[d], self._mean[d])) for d in vinfo['dims']]) \ or any([s != slice(None) for s in itertools.chain( vinfo['slice'], vinfo['postidx'])]): namemap[vname] = vname + suffix return namemap def _sum_avg(self, data, invar, vinfo, degen, summed, averaged): """Sum/average data Helper for `output` that performs summing and averaging of the data for a single variable. Note dimensionality of all input is before the removal of degenerate dimensions (this function does the translation using ``degen``), and it is by dimension not axis (so NRV variables have a vestigial 0th dimension that is not interpreted.) Parameters ---------- data : `numpy.ndarray` Data as read from input CDF and properly sliced. invar : `~.pycdf.Var` CDF input variable from which ``data`` was read. vinfo : dict Value from instance variable ``_varinfo`` for this variable. degen : list of bool For each dimension of this variable, whether the dimension is degenerate (i.e. already gone at this point.) summed : list of bool For each dimension of this variable, whether the dimension should be summed over. averaged : list of bool For each dimension of this variable, whether the dimension should be averaged over. Returns ------- `numpy.ndarray` Data summed/averaged over dimensions according to ``summed`` and ``averaged`` inputs. """ #Correction for NRV variables in the mapping between dim and axis nrv = int(not vinfo['rv']) #Degenerate slices have already been removed, so need #a map from old dim numbers to new ones. Note removing #the record dimension does not shift other dims! newdims = [None if degen[i] else i - sum(degen[1:i]) for i in range(len(degen))] #Axis numbers to sum, with degenerate removed #(NRV means dim 0 is axis 1, so correct for that, #and also don't do any actions on dim 0 for NRV) summe = [newdims[i] - nrv for i in range(nrv, len(summed)) #old dim if newdims[i] is not None and (summed[i] or averaged[i])] avgme = [newdims[i] - nrv for i in range(nrv, len(averaged)) #old dim if newdims[i] is not None and averaged[i]] #Sum over axes in reverse order so axis renumbering #doesn't affect future sums a = invar.attrs for ax in summe[::-1]: if vinfo['vartype'] == 'D': #If sum over DEPEND, must be constant over axis data = data.take(0, axis=ax) continue invalid = numpy.isclose(data, a['FILLVAL']) if 'VALIDMIN' in a: invalid = numpy.logical_or( invalid, data < numpy.min(a['VALIDMIN'])) if 'VALIDMAX' in a: invalid = numpy.logical_or( invalid, data > numpy.max(a['VALIDMAX'])) data[invalid] = 0 #avoids warning and helps with mean if vinfo['vartype'] == 'M': data = data.sum(axis=ax) elif vinfo['vartype'] == 'U': #propagate error data = numpy.sqrt((data ** 2).sum(axis=ax)) else: #Should not happen raise ValueError('Bad summation type.') if ax in avgme: #divide out count = numpy.sum(~invalid, axis=ax, dtype=data.dtype) invalid = (count == 0) count[invalid] = 1 #avoid warning data = data / count else: #Sum, so any fill on axis means value is fill invalid = invalid.max(axis=ax) data[invalid] = a['FILLVAL'] return data def _repoint_depend(self, invar, newvar, preexist, namemap, degen): """Change DEPEND for new dimensionality of one variable. Slicing/summing might change variable dimensionality and thus the relationship with its DEPENDs, and the DEPENDs themselves may have a new name. This updates the DEPEND attributes for these changes, or verifies they are correct if the output variable already exists. Parameters ---------- invar : `~.pycdf.Var` The input variable (opened in raw mode). newvar : `~.pycdf.Var` The output variable (opened in raw mode). preexist : bool True if ``newvar`` existed and doing a consistency check; False if ``newvar`` was newly created and should be edited. namemap : dict Map from name in input variable (key) to name in output variable (value). No entry if name didn't change. degen : list of bool For each dimension of this variable, whether the dimension is degenerate (i.e. already gone at this point.) This includes any degeneracy from summing/averaging as well as slicing. """ #Index by old dim; returns the new dim (None if went away) #Note slicing away DEPEND_0 (record dimension) does NOT change #subsequent depends! newdims = [None if degen[i] else i - sum(degen[1:i]) for i in range(len(degen))] for a in list(newvar.attrs.keys()): #Editing in loop! #Handle a suffixed DELTA if necessary if a.startswith('DELTA_'): olddelta = invar.attrs[a] if isinstance(olddelta, bytes): olddelta = olddelta.decode('ascii') newvar.attrs[a] = namemap.get(olddelta, olddelta) continue if not a.startswith(('DEPEND_', 'LABL_PTR_')): continue newdim = int(a.split('_')[-1]) oldval = None #Sentinel value if newdim in newdims: #An old value that belongs in this dim olddim = newdims.index(newdim) old_a = '{}_{}'.format('_'.join(a.split('_')[:-1]), olddim) oldval = invar.attrs.get(old_a, None) if isinstance(oldval, bytes): oldval = oldval.decode('ascii') if oldval is not None: #Check for variable renaming from the input to output newval = namemap.get(oldval, oldval) if preexist: existingval = newvar.attrs[a] if isinstance(existingval, bytes): existingval = existingval.decode('ascii') if existingval != newval: raise RuntimeError( 'Incompatible {} already exists in output.' .format(newvar.name())) else: newvar.attrs[a] = newval else: #Either there's no corresponding old dim, or it didn't have #a DEPEND. Either way, shouldn't be a DEPEND in the new dim. if preexist: if a in newvar.attrs: raise RuntimeError( 'Incompatible {} already exists in output.' .format(newvar.name())) else: del newvar.attrs[a] def _outshape(self, vname): """Calculate shape of the variable on output Parameters ---------- vname : str Name of the variable to check the shape of. Returns ------- tuple The shape of the variable after all slicing, etc. applied, or None of the variable is not included in output. """ if vname not in self._tokeep(): return None vinfo = self._varinfo[vname] invar = self.cdf[vname] rv = vinfo['rv'] shape = invar.shape sl = vinfo['slice'] postidx = vinfo['postidx'] #no dimension has BOTH a slice and a postindex, so combine slices = [pi if s == slice(None, None, None) else s for s, pi in zip(sl, postidx)] #And any dim that is summed/averaged is degenerate, so #slice with a single index to make it go away for d in vinfo['dims']: if self._summed[d] or self._mean[d]: slices[d] = 0 if not rv: #Remove record dimension slices = slices[1:] #Make a fake array the size of the input, and slice it return numpy.empty(shape=shape)[tuple(slices)].shape
[docs] def variables(self): """Description of variable output from the bundle Provides information describing the variables output from the bundle Returns ------- list Each element is a list-of-tuples. The list corresponds to a dimension of the master var: first the master var itself, then the uncertainties and labels associated with each dimension. Each element of these sublists is then a tuple of variable name and shape on the output (itself a tuple). If a variable isn't included in the output (sliced away), its shape will be ``None``. Examples -------- >>> import spacepy.pycdf >>> import spacepy.pycdf.istp >>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf') >>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU']) >>> b.slice(1, 2, single=True).variables() [[('FPDU', (100, 72))], [('Epoch_Ion', (100,)), ('Epoch_Ion_DELTA', (100,))], [('PITCH_ANGLE', None), ('Pitch_LABL', None)], [('HOPE_ENERGY_Ion', (100, 72)), ('ENERGY_Ion_DELTA', (100, 72)), ('Energy_LABL', (72,))]] """ #List of every variable in each dimension v_by_dim = functools.reduce( lambda x, vname: x[self._varinfo[vname].get('thisdim', None)].append(vname) or x, self._varinfo.keys(), collections.defaultdict(list)) for l in v_by_dim.values(): l.sort(key=lambda x: (self._varinfo[x]['sortorder'], x)) variables = [[(v, self._outshape(v)) for v in v_by_dim.get(None, [])]] vi = self._varinfo[self._name] for dim in vi['dims']: variables.append([ (v, self._outshape(v)) for v in v_by_dim.get(dim, [])]) return variables
[docs] def operations(self): """Operations of this bundle Provides information describing the operations this bundle would perform. Returns ------- list Each element is a tuple: first element is a string with the name of the operation (i.e. method of `VarBundle`), next is also a tuple of positional arguments, and finally a dict of keyword arguments. Examples -------- >>> import spacepy.pycdf >>> import spacepy.pycdf.istp >>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf') >>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU']) >>> b.slice(1, 2, single=True).operations() [('slice', (1, 2), {'single': True})] >>> #Apply same operations to a different variable >>> b2 = spacepy.pycdf.istp.VarBundle(infile['FEDU']) >>> for op, args, kwargs in b2.operations(): ... getattr(b2, op)(*args, **kwargs) """ ops = [] vi = self._varinfo[self._name] for dim in vi['dims']: sl = vi['slice'][dim] postidx = vi['postidx'][dim] if sl != slice(None, None, None): #simple slice if isinstance(sl, slice): #slice ops.append(( 'slice', tuple((s for s in (dim, sl.start, sl.stop, sl.step) if s is not None)), {})) else: #single index ops.append(('slice', (dim, sl), {'single': True})) elif postidx != slice(None, None, None): #fancy index ops.append(('slice', (dim, postidx,), {})) for v, name in zip((self._mean, self._summed), ('mean', 'sum')): if v[dim]: ops.append((name, (dim,), {})) return ops
[docs] def output(self, output, suffix=None): """Output the variables as modified Parameters ---------- output : `~.pycdf.CDF`, `~.datamodel.SpaceData` Output container to receive the new data, may be an open CDF file or a SpaceData. suffix : str Suffix to append to the name of any variables that are changed for the output. This allows the output to contain multiple variables derived from the same input variable. The main variable and its DELTA variables will always have the suffix applied. Any dependencies will have the suffix applied only if they have changed from the input CDF (e.g. from slicing.) Returns ------- VarBundle This bundle, for method chaining. See Also -------- toSpaceData Examples -------- >>> import spacepy.pycdf >>> import spacepy.pycdf.istp >>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf') >>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU']) >>> outfile = spacepy.pycdf.CDF('output.cdf', create=True) >>> #Output the low energy half in one variable >>> b.slice(2, 0, 36).output(outfile, suffix='_LoE') >>> #And the high energy half in another variable >>> b.slice(2, 36, 72).output(outfile, suffix='_HiE') >>> outfile.close() >>> infile.close() """ tokeep = self._tokeep() namemap = self._namemap(suffix) for vname in tokeep: vinfo = self._varinfo[vname] #Dim of main var that depends on this (None if main var or delta) maindim = vinfo.get('thisdim', None) #Degeneracy of dimensions in this variable's "frame" degen = [self._degenerate[d] for d in vinfo['dims']] #And whether the dim was summed summed = [self._summed[d] for d in vinfo['dims']] #And averaged averaged = [self._mean[d] for d in vinfo['dims']] # Raw data for CDF input *and* output only invar = self.cdf.raw_var(vname) if hasattr(output, 'raw_var')\ and hasattr(self.cdf, 'raw_var') else self.cdf[vname] sl = vinfo['slice'] #including 0th dim postidx = vinfo['postidx'] #Dimension size/variance for original variable #(0 index is CDF dimension 1) dv = self._varinfo[vname]['dv'] rv = self._varinfo[vname]['rv'] #and record variance #Scrub degenerate dimensions from the post-indexing #(record is never degenerate) postidx = [postidx[i] for i in range(len(postidx)) if not degen[i]] #Now get the data, and sum/average it if not rv: #Remove fake record dimension sl = sl[1:] postidx = postidx[1:] #Forces array scalars, makes the rest work better data = numpy.asanyarray(invar.__getitem__(tuple(sl))) if postidx: data = data[tuple(postidx)] data = self._sum_avg(data, invar, vinfo, degen, summed, averaged) #Summed/averaged dimensions are now also degenerate degen = [max(v) for v in zip(degen, summed, averaged)] #Get shape of output variable from actual data dims = data.shape #Raw Epoch16 have a trailing (2,) if hasattr(invar, 'type')\ and invar.type() == spacepy.pycdf.const.CDF_EPOCH16.value: dims = dims[:-1] #Cut out any degenerate dimensions from DV (skipping record dim) dv = [dv[i] for i in range(len(dv)) if not degen[i + 1]] #Change record variance for the output if sliced away 0th if rv and degen[0]: rv = False if rv: #remove record dimension from size IF output is RV dims = dims[1:] #Rename the variable if necessary outname = namemap.get(vname, vname) if outname in output: preexist = True newvar = output.raw_var(outname) if hasattr(output, 'raw_var')\ and hasattr(self.cdf, 'raw_var') else output[outname] if not self._same(newvar, invar, rv, dv, dims, data): raise RuntimeError( 'Incompatible {} already exists in output.' .format(outname)) else: preexist = False if hasattr(output, 'new'): t = invar.type() if hasattr(invar, 'type') else None try: compress, compress_param = invar.compress() except (TypeError, AttributeError): # arrays have a different "compress" compress, compress_param = None, None ne = invar.nelems() if hasattr(invar, 'nelems') else None newvar = output.new( outname, data=data, type=t, recVary=rv, dimVarys=dv, dims=dims, n_elements=ne, compress=compress, compress_param=compress_param) newvar.attrs.clone(invar.attrs) else: newvar = spacepy.dmarray(data, attrs=invar.attrs.copy()) output[outname] = newvar if vname != outname: #renamed newvar.attrs['FIELDNAM'] = outname self._repoint_depend(invar, newvar, preexist, namemap, degen) return self
[docs] def toSpaceData(self, suffix=None): """Return variables, as modified. Convenience function to call `output` on a new `~.datamodel.SpaceData` and return it. Parameters ---------- suffix : str Appended to the name of variables changed on output; see `output` for details. Returns ------- `.datamodel.SpaceData` Data read from input and processed according to the defined operations. See Also -------- output Examples -------- >>> import spacepy.pycdf >>> import spacepy.pycdf.istp >>> infile = spacepy.pycdf.CDF('rbspa_rel04_ect-hope-PA-L3_20121201_v7.1.0.cdf') >>> b = spacepy.pycdf.istp.VarBundle(infile['FPDU']) >>> data = b.slice(1, 2, single=True).toSpaceData() >>> infile.close() >>> data.tree() + |____ENERGY_Ion_DELTA |____Energy_LABL |____Epoch_Ion |____Epoch_Ion_DELTA |____FPDU |____HOPE_ENERGY_Ion """ sd = spacepy.SpaceData() self.output(sd, suffix=suffix) return sd
@staticmethod def _vtype(v): """String representation of type of a variable Parameters ---------- v Open CDF variable, numpy array, or similar Returns ------- str String representation of type of ``v``, either as CDF type or numpy type """ # Kludge, but assumes main CDF code gets it right res = str(v).split(' ')[0] if res.startswith('CDF_'): return res return str(v.dtype) def __str__(self): """String representation of the bundle Returns a string representation of the bundle, which is all the variables that are involved on the input. Variables which are not included on the output are in [] Returns ------- str Brief string description of the bundle. """ return '\n'.join([ '{}{}: {} {}{}'.format( ' ' * 4 if self._varinfo[vname]['sortorder'] > 1 else '', vname, self._vtype(self.cdf[vname]), str(list(shape)) if shape is not None else '---', #RV vars always have dim 0 as axis 0, so they become #NRV iff dim 0 of the main var goes away ' NRV' if shape is not None and (not self._varinfo[vname]['rv'] or max( self._degenerate[0], self._summed[0], self._mean[0])) else '' ) for dimvars in self.variables() for vname, shape in dimvars]) def __repr__(self): """Representation of bundle Cannot return anything that can be evaluated to create a copy of the CDF, so this is just the informal str representation in angle brackets. Returns ------- str Informal representation of bundle contents. """ return '<VarBundle:\n{}\n>'.format(str(self))